Design for immuno-oncology clinical trials with non-proportional hazards patterns

Zhenzhen Xu
U.S. Food and Drug Administration
Statistical Issues in Clinical Trials 2023

Joint work with

Bin Zhu Ph.D.
National Cancer Institute Principle Investigator

Yongsoek Park Ph.D.
University of Pittsburg Assistant Professor

Boguang Zhen Ph.D.
FDA
Branch Chief

Unkyung Lee Ph.D.
FDA
Postdoc Fellow

Acknowledgement

The work is supported by the Chief Scientist Intramural Challenge Grant of the U.S. Food and Drug Admiration

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's view or policies

FDA

Introduction

Challenges in immuno-oncology (IO) trials

- Unprecedented growth outstripped development of design and analysis
- Non-proportional hazards (NPH) patterns manifested in Kaplan-Meier curves

Statistical Challenges of NPH issue:

- Violate proportional hazards assumption
- Cause underpowered or even falsely negative studies

Question of Interest

- How to design adequate and well-controlled IO trials?
- How to mitigate the occurrence of complex NPH patterns?

Our strategy

- Cause: What are underlying cause or causes behind NPH patterns?
- Solution: Targeting causes, develop proper design and analysis strategies

Outline of the talk

- Delayed Effect Pattern
- Cause: Indirect working mechanism
- Solution: APPLE, APPLE+
- NPH Patterns
- Causes: mechanism + heterogeneity
- Solution: PRIME, PRIME+

FDA

Delayed Effect Pattern

Causes of Delayed Effect Pattern

- Primary causes: Indirect mechanism of action
- Frontline Investigation of Revlimid and Dexamethasone vs Standard Thalidomide (FIRST) study
- Revlimid: Immunomodulatory drug
- Transplant-ineligible patients with Myeloma

Motivating example

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Flgure 1. Kaplan-Meler curves for progresslon-free survival: Study FIRST (Revilmid).

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Figure 1. Kaplan-Meler curves for progression-free survival: Study FIRST (Revilimid).

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Figure 1. Kaplan-Meler curves for progression-free survival: Study FIRST (Revilimid).

Piecewise Weighted Logrank Test

Theorem 1. Under fixed delayed scenario, the optimal weights $\mathrm{W}_{\mathrm{j}}^{*}=\operatorname{argmax}\left\{\operatorname{Pow}\left(w_{j}\right)\right\}$ need to satisfy that $\boldsymbol{W}_{\boldsymbol{j}}^{*} \propto \boldsymbol{\operatorname { l o g }}\left\{\boldsymbol{\lambda}\left(\boldsymbol{t}_{\boldsymbol{j}}\right)\right\}$

$$
\begin{aligned}
H_{0}: \lambda(t)=1 \quad \text { vs } \quad H_{1}: \lambda(t)=\left\{\begin{array}{cc}
1, & t<t^{*} \\
<1, & t \geq t^{*}
\end{array}\right. \\
\boldsymbol{W}^{*}(\boldsymbol{t})= \begin{cases}\mathbf{0}, & \boldsymbol{t}<\boldsymbol{t}^{*} \\
\mathbf{1}, & \boldsymbol{t} \geq \boldsymbol{t}^{*}\end{cases}
\end{aligned}
$$

APPLE \& SEPPLE

Piecewise Weighted Logrank Test:

- Analytic Power calculation based on Piecewise-weighted Logrank test (APPLE)
- Simulation-based Empirical Power calculation based on Piecewise-weighted Logrank test (SEPPLE)

Pros and Cons

- Pros:

- Practical applications:
- FDA Science Board:

FDA Chief Scientist Publication Award:
An exceptional manuscript with immediate impact that may speed availability of cancer therapies

- Cons:
- Fixed Lag Effect scenario: Each subject takes same lag t^{*} (biologically implausible)
- t^{*} can be properly specified in advance (mis-specification risk)

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Figure 1. Kaplan-Meler curves for progression-free survival: Study FIRST (Revilimid).

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Figure 1. Kaplan-Meler curves for progression-free survival: Study FIRST (Revilimid).

Assumptions: Random lag effect scenario

Each subject takes a specific lag $t_{\text {ind }}^{*} \sim \operatorname{Dist}\left(T_{1}, T_{2}\right)$

- T_{1} : Patient's shortest possible treatment lag time
- T_{2} : Patient's longest possible treatment lag time

Generalized Piecewise Weighted Logrank Test

Theorem 2. Under random delayed scenario, the optimal weights $\mathrm{W}_{\mathrm{j}}^{*}=\operatorname{argmax}\left\{\operatorname{Pow}\left(w_{j}\right)\right\}$ need to satisfy that $\boldsymbol{W}_{\boldsymbol{j}}^{*} \propto \boldsymbol{F}_{*}\left(\boldsymbol{t}_{\boldsymbol{j}}\right)$

$$
H_{0}: \lambda(t)=1 \quad \text { vs } \quad H_{1}: \lambda(t)=f(x)=\left\{\begin{array}{cc}
1, & t<T_{1} \\
\lambda_{2}^{g(t)}, & T_{1}<t \leq T_{2} \\
\lambda_{2}, & t>T_{2}
\end{array}\right.
$$

$$
W^{*}(t)=F_{*}(t)
$$

Generalized Piecewise Weighted Logrank Test

If the lag $t_{i n d}^{*}$ follows a uniform distribution on $\left[T_{1}, T_{2}\right]$:

$$
w^{*}(t)=F_{* u}(t)= \begin{cases}w_{1}^{*}(t)=0, & t \leq T_{1} \\ w_{2}^{*}(t)=\left(t-T_{1}\right) /\left(T_{2}-T_{1}\right), & T_{1}<t \leq T_{2} \\ w_{3}^{*}(t)=1, & t>T_{2}\end{cases}
$$

Motivating example

Lenalidomide and Dexamethasone in Transplant-Ineligible Patients with Myeloma

Figure 1. Kaplan-Meler curves for progression-free survival: Study FIRST (Revilimid).

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Fixed scenario with $t^{*}=6$	
PW-Logrank $t^{*}=6$	79%

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Fixed scenario with $t^{*}=6$	
PW-Logrank $t^{*}=6$	79%
$P W$-Logrank $\mathbf{t}^{\mathrm{m}}=1$	63%
PW-Logrank $\mathbf{t}^{\mathrm{m}}=11$	64%

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Fixed scenario with $t^{*}=6$	
PW-Logrank $t^{*}=6$	79%
PW-Logrank $\mathbf{t}^{\mathrm{m}}=1$	$\mathbf{6 3 \%}$
PW-Logrank $\mathbf{t}^{\mathrm{m}}=11$	$\mathbf{6 4 \%}$
GPW-Logrank $\left[T_{1}, T_{2}\right]=[1,11]$	76%
GPW-Logrank $\left[T_{1}, T_{2}\right]=[1,9]$	76%
GPW-Logrank $\left[T_{1}, T_{2}\right]=[3,9]$	78%

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Random scenario with $\left[T_{1}, T_{2}\right]=[3,9]$	
GPW-Logrank $\left[T_{1}^{*}, T_{2}^{*}\right]=[3,9]$	80%

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Random scenario with $\left[T_{1}, T_{2}\right]=[3,9]$	
GPW-Logrank $\left[T_{1}^{*}, T_{2}^{*}\right]=[3,9]$	80%
GPW-Logrank $\left[T_{1}^{m}, T_{2}^{m}\right]=[1,9]$	79%
GPW-Logrank $\left[T_{1}^{m}, T_{2}^{m}\right]=[3,11]$	79%

Advantage of GPW Logrank test vs PW Logrank test

Test	Power
True parameter setting: Random scenario with $\left[T_{1}, T_{2}\right]=[3,9]$	
GPW-Logrank $\left[T_{1}^{*}, T_{2}^{*}\right]=[3,9]$	80%
GPW-Logrank $\left[T_{1}^{m}, T_{2}^{m}\right]=[1,9]$	79%
GPW-Logrank $\left[T_{1}^{m}, T_{2}^{m}\right]=[3,11]$	$\mathbf{7 9 \%}$
PW-Logrank $\boldsymbol{t}^{m}=1$	$\mathbf{6 6 \%}$
PW-Logrank $\boldsymbol{t}^{m}=11$	$\mathbf{6 9 \%}$

APPLE + , SEPPLE +

Generalized Piecewise Weighted Logrank Test

- APPLE \Longleftrightarrow APPLE+
- SEPPLE \longmapsto SEPPLE+

How to deal with general NPH Patterns?

FDA

NPH Patterns

Causes of NPH Patterns

- Possible causes: Indirect mechanism of action
- What are underlying causes behind other NPH patterns?
- There may be more than a working mechanism...

Elephant In The Room

- A limited percentage of treated subjects respond whereas others don't
- Are we treating heterogeneous patients $\square \mathrm{NPH}$?

A real study

- A limited percentage of treated subjects respond whereas others don't
- Are we treating heterogeneous patients \Rightarrow NPH?

$$
\begin{aligned}
& \text { The NEW ENGLAND } \\
& \text { JOURNAL of MEDICINE } \\
& \text { Established in } 1812 \text { SEPTEMBER 3, } 2009 \quad \text { vol. } 361 \text { No. } 10 \\
& \text { Gefitinib or Carboplatin-Paclitaxel in Pulmonary } \\
& \text { Adenocarcinoma } \\
& \text { Tony S. Mok, M.D., Yi-Long Wu, M.D., F.A.C.S., Sumitra Thongprasert, M.D., Chih-Hsin Yang, M.D., Ph.D. } \\
& \text { Da-Tong Chu, M.D., Nagahiro Saijo, M.D., Ph.D., Patrapim Sunpaweravong, M.D., Baohui Han, M.D. } \\
& \begin{array}{l}
\text { Benjamin Margono, M.D., Ph.D., F.C.C.P., Yukito Ichinose, M.D., Yutaka Nishiwaki, M.D., Ph.D., } \\
\text { Yuichiro Ohe, M.D., Ph. D., Jin-li Yang, M.D., Busyamas Chewaskulyong M. D. Haivi liang M.D }
\end{array} \\
& \text { Emma L. Duffield, M.Sc., Claire L. Watkins, M.Sc., Alison A. Armour, F.R.C.R., and Masahiro Fukuoka, M.D., Ph.D. }
\end{aligned}
$$

A real study

- Mok et al. Gefitinib or Carboplatin-Paclitasel in Pulmonary Adenocarcinoma. NEJM 2009; 361:947-957.

Non-proportionality Theorem

Theorem 1.
$h(t)=\sum_{j=1}^{K-1} h_{j}-\frac{\sum_{j=1}^{K-1} h_{j c}^{(K-1)} p_{j} S_{C}^{*}(t)^{h_{j}}+\left\{\left(\sum_{j=1}^{(K-1)} h_{j}\right)-1\right\} p_{K} S_{C}^{*}(t)}{S_{T}^{*}(t)}$

- $p_{j}=100 \% \Rightarrow h(t)=h_{j}$ heterogeneous population
- $h_{k}=1$ for all $k^{\prime} s \Rightarrow h(t)=1$ ineffective treatment

Non-proportionality Theorem

Theorem 3. The population hazard ratio function between treatment and control remains a constant only if the patient responses to treatment are homogeneous or the given treatment is ineffective to all treated subjects.

Our thought process..

Cause

Challenge

Solution

- Treating
heterogeneous patients
- Differentiate various types of responders and non-responders
- Chance of response \approx aggregated prevalence of each subgroup

PRIME+

PRIME+: P\%-responder information embedded strategy:

- Feature: embed heterogeneous treatment response + delayed effect
- Objective response, stable disease, progressive disease/non-response
- Aims:
- Study efficiency: Salvage power loss due to NPH patterns
- Effect estimation: Detect subgroup-specific effect size

Model

- Mixture model:
- heterogeneous treatment population
- latent responder membership Z

$$
\left\{\begin{array}{l}
Z_{i} \mid i \in T \stackrel{i . i . d}{\sim} \operatorname{Multinomial}\left(p_{1}, p_{2}, \ldots, p_{J}\right) \\
Z_{i} \mid i \in C=0
\end{array}\right.
$$

PRIME+ Strategy

FDA

Re-design Nivolumab NSCLC Study By PRIME+

Re-design Nivolumab NSCLC Study

The Nivolumab NSCLC
Study: Borghaei et al. NEJM 2015

The NEW ENGLAN D JOURNAL of MEDICINE

ORIGINALARTICLE

Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer

N. Revi, L. Crind, G. . Blumenschein, JI, SJ. Antonia, C. Dorange

CT Haticon 5 Gof Finclenstein and 10 Brahmer
$\square_{\text {ABSTRACT }}$

tis ran
rits randomized, open:2bel, ineernational plase 3 sudd, we assigned paxien

overall survina!

Re-design Nivolumab NSCLC Study

Original Design: The Nivolumab NSCLC Study: Borghaei et al. NEJM 2015

- Nivolumab vs. Docetaxel in NSCLC
- Hybrid, simulation-based Design: 582 subjects to achieve 90% power

Re-design Nivolumab NSCLC Study

Original Design: The Nivolumab NSCLC Study: Borghaei et al. NEJM 2015

- Nivolumab vs. Docetaxel in NSCLC
- Hybrid, simulation-based Design: 582 subjects to achieve 90\% power

Re-design by PRIME+: 450 subjects to achieve 90\% power

- $P_{1}=20 \%, P_{2}=25 \%, P_{3}=55 \%$
- $\lambda_{O R}=0.2, \lambda_{S D}=0.52$
- $\operatorname{ORR}=20 \% ; \operatorname{SDR}=25 \% ; \mathrm{PR} / \mathrm{NR}=55 \%$
- $\bar{\lambda}_{T}=0.73$ between Nivolumab vs Docetaxel
- $20 \% \mathrm{OR}+25 \% \mathrm{SD}+55 \% \mathrm{NR} \Rightarrow \bar{\lambda}_{T}=0.73$

Nivolumab Study Survival Patterns

FDA

Conclusions

Unique Features of our proposal:

APPLE, APPLE+: Delayed effect pattern
PRIME, PRIME+: Non-proportional hazards patterns

Cause

Solution

Advantages:

- Inference and treatment effect estimation:
- Enhance efficiency
- Provide clinical meaningful treatment effect estimation
- Improve robustness
- Outline a strategy to mitigate occurrence of NPH patterns

Thank you

FDA
U.S. FOOD \& DRUG

ADMINISTRATION

