Design for immuno-oncology clinical trials with non-proportional hazards patterns

Zhenzhen Xu

U.S. Food and Drug Administration

Statistical Issues in Clinical Trials 2023

Joint work with

Bin Zhu Ph.D.

National Cancer Institute Principle Investigator

Yongsoek Park Ph.D.

University of Pittsburg Assistant Professor

Boguang Zhen Ph.D.

FDA **Branch Chief**

Unkyung Lee Ph.D.

FDA Postdoc Fellow

Acknowledgement

The work is supported by the Chief Scientist Intramural Challenge Grant of the U.S. Food and Drug Admiration

Disclaimer

This presentation reflects the views of the author and should not be construed to represent FDA's view or policies

Challenges in immuno-oncology (IO) trials

- Unprecedented growth outstripped development of design and analysis
- Non-proportional hazards (NPH) patterns manifested in Kaplan-Meier curves

alysis Meier curves

NPH Patterns

6

Statistical Challenges of NPH issue:

- Violate proportional hazards assumption
- Cause underpowered or even falsely negative studies

Question of Interest

- How to design adequate and well-controlled IO trials?
- How to mitigate the occurrence of complex NPH patterns?

Our strategy

- **Cause**: What are underlying cause or causes behind NPH patterns?
- **Solution**: Targeting causes, develop proper design and analysis strategies

Outline of the talk

- Delayed Effect Pattern
 - Cause: Indirect working mechanism
 - Solution: APPLE, APPLE+
- NPH Patterns
 - Causes: mechanism + heterogeneity
 - Solution: PRIME, PRIME+

ig mechanism LE+

heterogeneity ME+

10

Causes of Delayed Effect Pattern

- <u>Primary causes</u>: Indirect mechanism of action
 - Frontline Investigation of Revlimid and Dexamethasone vs Standard Thalidomide (FIRST) study
 - Revlimid: Immunomodulatory drug
 - Transplant-ineligible patients with Myeloma

Piecewise Weighted Logrank Test

Theorem 1. Under fixed delayed scenario, the optimal weights $W_j^* = argmax\{Pow(w_j)\}\$ need to satisfy that $W_j^* \propto log\{\lambda(t_j)\}$

$$H_{0}:\lambda(t) = 1 \quad vs \quad H_{1}:\lambda(t) = \begin{cases} 1, & t < t^{*} \\ < 1, & t \ge t^{*} \end{cases}$$
$$W^{*}(t) = \begin{cases} 0, & t < t^{*} \\ 1, & t \ge t^{*} \end{cases}$$

APPLE & SEPPLE

Piecewise Weighted Logrank Test:

- Analytic Power calculation based on Piecewise-weighted Logrank test (APPLE)
- Simulation-based Empirical Power calculation based on Piecewise-weighted Logrank test (SEPPLE)

ank t<mark>e</mark>st (APPLE) wise-weighted

Pros and Cons

• Pros:

- Practical applications:
- FDA Science Board:

FDA Chief Scientist Publication Award: An exceptional manuscript with immediate impact that may speed availability of cancer therapies

• Cons:

- Fixed Lag Effect scenario: Each subject takes same lag *t*^{*} (biologically implausible)
- *t*^{*} can be properly specified in advance (mis-specification risk)

Assumptions: Random lag effect scenario

Each subject takes a specific lag $t_{ind}^* \sim \text{Dist}(T_1, T_2)$

- T_1 : Patient's shortest possible treatment lag time
- T_2 : Patient's longest possible treatment lag time

Generalized Piecewise Weighted Logrank Test

Theorem 2. Under random delayed scenario, the optimal weights $W_j^* = argmax\{Pow(w_j)\}$ need to satisfy that $W_j^* \propto F_*(t_j)$

$$H_{0}: \lambda(t) = 1 \quad vs \quad H_{1}: \lambda(t) = f(x) = \begin{cases} 1, & t < T_{1} \\ \lambda_{2}^{g(t)}, T_{1} < t \le T_{2} \\ \lambda_{2}, & t > T_{2} \end{cases}$$
$$W^{*}(t) = F_{*}(t)$$

Generalized Piecewise Weighted Logrank Test

If the lag t_{ind}^* follows a uniform distribution on $[T_1, T_2]$:

$$w^*(t) = F_{*u}(t) = \begin{cases} w_1^*(t) = 0, \\ w_2^*(t) = (t - T_1)/(T_2) \\ w_3^*(t) = 1, \end{cases}$$

$t \le T_1$ - T₁), T₁ < t \le T₂ $t > T_2$

Test	Power
True parameter setting: Fixed scenario	with $t^* = 6$
PW-Logrank $t^* = 6$	79%
PW-Logrank t^m = 1	63%
PW-Logrank t^m = 11	64%

		FDA
st		
	_	

Test	Power
True parameter setting: Fixed scenario wi	ith <i>t</i> * = 6
PW-Logrank t * = 6	79%
PW-Logrank t^m = 1	63%
PW-Logrank t ^m = 11	64%
GPW-Logrank $[T_1, T_2] = [1, 11]$	76%
GPW-Logrank $[T_1, T_2] = [1, 9]$	76%
GPW-Logrank $[T_1, T_2] = [3, 9]$	78%

28

Test	Power
True parameter setting: Random scenario v	vith [<i>T</i> ₁ , <i>T</i> ₂]=[3,9
GPW-Logrank $[T_1^*, T_2^*] = [3, 9]$	80%
GPW-Logrank $[T_1^m, T_2^m] = [1, 9]$	79%
GPW-Logrank $[T_1^m, T_2^m] = [3, 11]$	79%

Test	Power
True parameter setting: Random scenario with	[<i>T</i> ₁ , <i>T</i> ₂]=[3,9
GPW-Logrank $[T_1^*, T_2^*] = [3, 9]$	80%
GPW-Logrank $[T_1^m, T_2^m] = [1, 9]$	79%
GPW-Logrank $[T_1^m, T_2^m] = [3, 11]$	79%
PW-Logrank $t^m = 1$	66%
PW-Logrank t^m = 11	69%

APPLE+, SEPPLE+

Generalized Piecewise Weighted Logrank Test

- APPLE \implies APPLE+
- SEPPLE \implies SEPPLE+

How to deal with general NPH Patterns?

33

Causes of NPH Patterns

- <u>Possible causes</u>: Indirect mechanism of action
 - What are underlying causes behind other NPH patterns?
- There may be more than a working mechanism...

Elephant In The Room

- A limited percentage of treated subjects respond whereas others don't
 - Are we treating heterogeneous patients > NPH?

A real study

- A limited percentage of treated subjects respond whereas others don't
 - Are we treating heterogeneous patients > NPH?

A real study

• Mok et al. Gefitinib or Carboplatin-Paclitasel in Pulmonary Adenocarcinoma. NEJM 2009; 361:947-957.

38

Non-proportionality Theorem

Theorem 1.

$$h(t) = \sum_{j=1}^{K-1} h_j - \frac{\sum_{j=1}^{K-1} h_{j^c}^{(K-1)} p_j S_C^*(t)^{h_j} + \left\{ \left(\sum_{j=1}^{(K-1)} h_j \right) - 1 \right\} p_K}{S_T^*(t)}$$

• $p_j = 100\% \Rightarrow h(t) = h_j$ heterogeneous population

• $h_k = 1$ for all $k's \Rightarrow h(t) = 1$ ineffective treatment

Non-proportionality Theorem

Theorem 3. The population hazard ratio function between treatment and control remains a constant only if the patient responses to treatment are homogeneous or the given treatment is ineffective to all treated subjects.

Our thought process..

Cause

Challenge

- Treating heterogeneous patients
- Differentiate various types of responders and non-responders

Solution

• Chance of response ≈ aggregated prevalence of each subgroup

PRIME+

PRIME+: P%-responder information embedded strategy:

- Feature: embed heterogeneous treatment response + delayed effect
 - Objective response, stable disease, progressive disease/non-response
- Aims:
 - <u>Study efficiency</u>: Salvage power loss due to NPH patterns
 - <u>Effect estimation</u>: Detect subgroup-specific effect size

l effect oonse

Model

- Mixture model:
 - heterogeneous treatment population
 - latent responder membership Z

$$\begin{cases} Z_i \mid i \in T \stackrel{i.i.d}{\sim} \textit{Multinomial}(p_1, p_2, ..., p_J) \\ Z_i \mid i \in C = 0 \end{cases}$$

PRIME+ Strategy

PRIME+ Sample Size & Power Calculation

Re-design Nivolumab NSCLC Study By PRIME+

Re-design Nivolumab NSCLC Study

The Nivolumab NSCLC Study: Borghaei et al. NEJM 2015

The NEW ENC JOURNAL of M	GLAND EDICI
Nivolumab versus Docetaxel in Advance Nonsquamous Non–Small-Cell Lung Ca H. Borghaei, L. Paz-Ares, L. Horn, D.R. Spigel, M. Steins, N.E. Ready, L.Q E.E. Vokes, E. Felip, E. Holgado, F. Barlesi, M. Kohlhauft, O. Arrieta, M.A. J. Fayette, H. Lena, E. Poddubskaya, D.E. Gerber, S.N. Gettinger, C.M. F N. Rizvi, L. Crinò, G.R. Blumenschein, Jr., S.J. Antonia, C. Dorange C.T. Harbison, F. Graf Finckenstein, and J.R. Brahmer	ed ncer . Chow, Burgio, Iudin,
ABSTRACT	
Nivolumab, a fully human IgG4 programmed death 1 (PD-1) immune-chec inhibitor antibody, disrupts PD-1-mediated signaling and may restore ar immunity.	kpoint- tritumor pendix. Address reprint request Borghael, Fox Chase Cancer Cen Cottman Ave., Philadelphia, PA I at bearing header with the content of the content at bearing header with the content the content of the content of the content of the content the content of the content of the content of the content the content of the content of
In this randomized, open-label, international phase 3 study, we assigned with nonsquamous non-small-cell lung cancer (NSCLC) that had progress ing or after platinum-based doublet chemotherapy to receive nivolumab a of 3 mg per kilogram of body weight every 2 weeks or docetaxel at a dose of per square meter of body-surface area every 3 weeks. The primary end po overall survival.	patients This article was published on Sep sed dur- t a dose N Engl J Med 2015;17 3:1527-39. DOI: 10.1056/NEJMon1507641 Copyrght & 2013 Manachusti Minked 1

Re-design Nivolumab NSCLC Study

Original Design: The Nivolumab NSCLC Study: Borghaei et al. NEJM 2015

- Nivolumab vs. Docetaxel in NSCLC
- Hybrid, simulation-based Design: 582 subjects to achieve 90% power

Re-design Nivolumab NSCLC Study

Original Design: The Nivolumab NSCLC Study: Borghaei et al. NEJM 2015

- Nivolumab vs. Docetaxel in NSCLC
- Hybrid, simulation-based Design: 582 subjects to achieve 90% power

Re-design by PRIME+: 450 subjects to achieve 90% power

- $P_1 = 20\%, P_2 = 25\%, P_3 = 55\%$
- $\lambda_{OR} = 0.2, \, \lambda_{SD} = 0.52$
 - ORR = 20%; SDR = 25%; PR/NR = 55%
 - $\bar{\lambda}_T = 0.73$ between Nivolumab vs Docetaxel
 - 20% OR + 25% SD + 55% NR $\Rightarrow \bar{\lambda}_T = 0.73$

Nivolumab Study Survival Patterns

Unique Features of our proposal:

APPLE, APPLE+: Delayed effect pattern PRIME, PRIME+: Non-proportional hazards patterns

Cause Solution

52

Advantages:

- Inference and treatment effect estimation:
 - Enhance efficiency
 - Provide clinical meaningful treatment effect estimation
 - Improve robustness
- Outline a strategy to mitigate occurrence of NPH patterns

Research Article Statistics in Medicine	RESEARCH ARTICLE	WILEY Statistics in Medicine	F
Received 29 March 2016, Accepted 2 October 2016 Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/sim.7157 Designing therapeutic cancer vaccine trials with delayed treatment effect	Designing cancer i treatment time-lag	mmunotherapy trials with random g effect	
م Zhenzhen Xu, ^{a*†} Boguang Zhen, ^a Yongsoek Park ^b and Bin Zhu ^c	Zhenzhen Xu ¹ Yongsoek	Park ² Boguang Zhen ¹ Bin Zhu ³	
Arming the immune system against cancer has emerged as a powerful tool in oncology during recent years. Instead of poisoning a tumor or destroying it with radiation, therapeutic cancer vaccine, a type of cancer immunotherapy, unleashes the immune system to combat cancer. This indirect mechanism-of-action of vaccines poses the possibility of a delayed onset of clinical effect, which results in a delayed separation of survival curves between the experimental and control groups in therapeutic cancer vaccine trials with time-to-event endpoints. This violates the proportional hazard assumption. As a result, the conventional study design based on the regular log-rank test ignoring the delayed effect would lead to a loss of power. In this paper, we propose two innovative approaches for sample size and power calculation using the piecewise weighted log-rank test to properly and effi- ciently incorporate the delayed effect into the study design. Both theoretical derivations and empirical studies demonstrate that the proposed methods, accounting for the delayed effect, can reduce sample size dramatically while achieving the target power relative to a standard practice. Copyright ⊕ 2016 John Wiley & Sons, Ltd.	¹ CBER, Food and Drug Administration, Silver Spring, Maryland ² Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania ³ DCEG, National Cancer Institute, Bethesda, Maryland Correspondence	In some clinical settings such as the cancer immunotherapy trials, a treatment time-lag effect may be present and the lag duration possibly vary from subject to subject. An efficient study design and analysis procedure should not only take into account the time-lag effect but also consider the individual hetero- geneity in the lag duration. In this paper, we present a Generalized Piecewise Weighted Logrank (GPW-Logrank) test, designed to account for the random	Pack Title Sample Size and Pow APPLE+ and SEPPL Version 1.1.0 Date 2022-11-21 Author
Xu et al. Journal of Hematology & Oncology (2020) 13:20 Journal of Hematology & Oncology https://doi.org/10.1186/s13045-020-0847-x Journal of Hematology & Oncology RESEARCH Open Access	research article Design for immun	Statistics in Medicine WILEY	Author Zhenzhen Xu <zhenz soek Park <yongpark Description Provides samp fect is present and the ject, or varies heterog ing a specific pattern. scribed in Xu, Z., Zhe</yongpark </zhenz
Treating non-responders: pitfalls and implications for cancer immunotherapy trial design	responders and no Zhenzhen Xu ¹ 0 Bin Zhu ²	nresponders	Pack
Zhenzhen Xu ^{1*} , Yongsoek Park ² , Ke Liu ^{1†} and Bin Zhu ^{3†} Abstract Background: Conventional trial design and analysis strategies fail to address the typical challenge of immune- oncology (IO) studies: only a limited percentage of treated patients respond to the experimental treatment. Treating non-responders, we hypothesize, would in part drive non-proportional hazards (NPH) patterns in Kaplan- Meier curves that violates the proportional hazards (PH) assumption required by conventional strategies. Ignoring such violation incurred from treating non-responders in the design and analysis strategy may result in underpowered or even falsely negative studies. Hence, designing innovative IO trials to address such pitfall becomes essential.	¹ Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland ² Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland ³ Department of Biostatistics, University of Pitisburgh, Pitisburgh, Pennsylvania	A typical challenge facing the design and analysis of immuno-oncology (IO) tri- als is the prevalence of nonproportional hazards (NPH) patterns manifested in Kaplan-Meier curves under time-to-event endpoints. The NPH patterns would violate the proportional hazards assumption, and yet conventional design and analysis strategies often ignore such a violation, resulting in underpowered or even falsely negative IO studies. In this article, we show, both empirically and analytically, that treating nonresponders in IO studies of inadequate size would	Title Study design for in Version 1.1.0 Date 2020-05-18 Author Zhenzhen Xu < soek Park <yongp. Description Perform sa oncology (IO) tria</yongp.

age 'DelayedEffect.Design'

November 22, 2022

ver Calculations using the APPLE, SEPPLE, E+ Methods

72

hen.Xu@fda.hhs.gov>, BoguangZhen<Boguang.Zhen@fda.hhs.gov>, Yongk@pitt.edu> and Bin Zhu <bin.zhu@nih.gov>

ple size and power calculations when the treatment time-lag efe lag duration is either homogeneous across the individual subgeneously from individual to individual within a certain domain and follow-The methods used are denen, B., Park, Y., & Zhu, B. (2017) <doi:10.1002/sim.7157>.

kage 'Immunotherapy.Design'

May 18, 2020

immunotherapy clinical trials

<Zhenzhen.Xu@fda.hhs.gov>, Yongpark@pitt.edu> and Bin Zhu <bin.zhu@nih.gov>

ample size, power calculation and subsequent analysis for Immunoals composed of responders and nonresponders.

Thank you

55