Non- and semi-parametric approaches to estimand construction for composite endpoints

Penn Conference on Statistical Issues in Clinical Trials: Advances in Time to Event Analyses

4-17-2023

Lu Mao

Associate Professor of Biostatistics

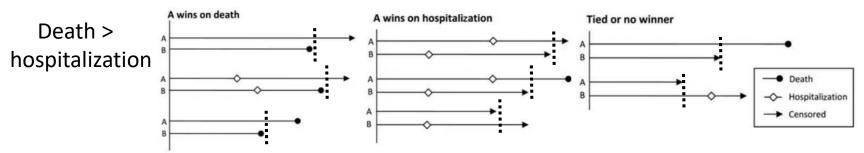
University of Wisconsin-Madison

Introduction – Composite Endpoints

- **Composite endpoints**: those that combine mortality with nonfatal events like cardiovascular (CV) hospitalization and tumor progression
 - <u>Traditional</u>: time to first event
 - <u>Limitations</u>:
 - Statistical efficiency
 - Death vs nonfatal events
- General pairwise comparisons (GPC): compare every patient in the treatment with every one in the control
 - Involve more events
 - Flexible ranking of event types (e.g., death > hospitalization)

Introduction – GPC

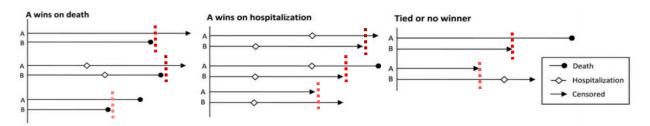
- General framework: for each pair, determine a winner, loser, or tie
 - E.g., compare the two at the earlier of their death/censoring times



- \hat{w}_1 : proportion of pairs where treated wins; \hat{w}_0 : proportion of pairs where untreated wins
- <u>GPC statistics</u>
 - Win ratio (WR): \hat{w}_1/\hat{w}_0 (Pocock et al., 2012)
 - *Proportion in favor* (PIF) of treatment (or *net benefit*): $\hat{w}_1 \hat{w}_0$ (Buyse, 2010)
 - Win odds (WO): $(\hat{w}_1 + 0.5\hat{O})/(\hat{w}_0 + 0.5\hat{O})$ (Dong et al., 2020a), where $\hat{O} = 1 \hat{w}_1 \hat{w}_0$

Introduction – GPC

• Limitation: the *estimands* of win/loss proportions depend on censoring distribution



- \hat{w}_a mixes comparisons made at *different* times (Luo et al., 2015; Bebu & Lachin, 2016; Oakes, 2016)
 - $\widehat{w}_a \rightarrow w_a \ (a = 1, 0)$
 - Heavy censoring \rightarrow shorter follow-up \rightarrow less events $\rightarrow w_a \downarrow$
 - In fact (Oakes, 2016)

$$w_a = \int_0^\infty w_a(t) \, \mathrm{d}G(t)$$

- $w_a(t) = pr(\text{Group } a \text{ wins against group } 1 a \text{ by time } t)$
- G(t): Distribution of the *minimum* of the two group-specific *censoring times*

Introduction – Testing or Estimation?

• Hypothesis testing (qualitative): test

 $H_0: w_1(t) \equiv w_0(t), \qquad \forall \ t \ge 0$

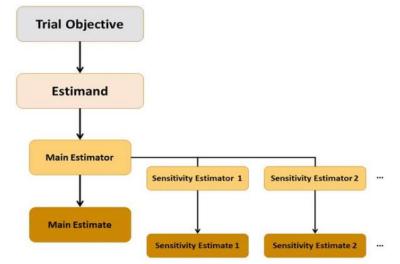
against

 $H_A: w_1(t) \ge w_0(t), \forall t \ge 0$ with strict inequality for some t

- GPC statistics generally yield valid tests
 - E.g., Reject H_0 if $\log(\hat{w}_1/\hat{w}_0) > \hat{c}_{\alpha}$ (determined by variance of log-WR and type I error α)
 - As sample size increases, $pr\{log(\widehat{w}_1/\widehat{w}_0) > \widehat{c}_{\alpha}\} \xrightarrow{H_A} 1$ (consistency)
- Estimation (quantitative): how much is the treatment better than control?
 - WR, PIF, and WO are functions of censoring distribution
 - *Generalization* to target population questionable (Luo and Quan, 2020)

Introduction – ICH-E9(R1) Addendum

- ICH-E9 (R1): "Estimands and Sensitivity Analysis in Clinical Trials" (ICH, 2020)
 - "A central question for drug development and licensing is to quantify treatment effects."
 - Define effect-size estimands that are meaningful and generalizable (Akacha et al., 2017a; Akacha et al., 2017b; Akacha et al., 2021; McCaw et al., 2021; Ionan et al., 2022)
 - Remove the influence of censoring
 - The guidelines have been adopted by European Medicines Agency (EMA) and FDA (Lynggaard et al., 2022)



Estimand Construction

• General strategy

- Full (*uncensored*) outcome on a patient from group $a : \mathcal{H}^{(a)}(\infty)$ (a = 1, 0)
 - $\mathcal{H}^{(a)}(t) = \left\{ N_D^{(a)}(u), N_1^{(a)}(u), \dots, N_K^{(a)}(u) : 0 \le u \le t \right\}$
 - $N_D^{(a)}(u) = I(D^{(a)} \le u); D^{(a)} = \text{Overall survival time}$
 - $N_k^{(a)}(u)$ = Counting process for *k*th type of (possibly recurrent) nonfatal event (k = 1, ..., K)
- Win/loss process

$$w_{a}(t) = \operatorname{pr}\left(\mathcal{H}^{(a)}(t) \text{ wins against } \mathcal{H}^{(1-a)}(t)\right)$$

• E.g., $w_{a}(t) = \operatorname{pr}\left(D^{(1-a)} < D^{(a)} \land t \text{ or } \left\{D^{(1)} \land D^{(0)} > t, T^{(1-a)} < T^{(a)} \land t\right\}\right),$
Win on death
(b $\land c = \min(b, c)$, $T^{(a)}$: time to first nonfatal event)

Estimand Construction – Two Approaches

- Nonparametric: Specify a time horizon τ (e.g., 5 years) (Oakes, 2016; Finkelstein & Schoenfeld, 2019)
 - Restricted WR: $w_1(\tau)/w_0(\tau)$
 - Restricted PIF: $w_1(\tau) w_0(\tau)$
 - Restricted WO: $\{w_1(\tau) + 0.5O(\tau)\}/\{w_0(\tau) + 0.5O(\tau)\}$, where $O(\tau) = 1 w_1(\tau) w_0(\tau)$
- Semiparametric: Impose a temporal model on relationship between $w_1(t)$ and $w_0(t)$
 - Proportional win-fractions model: $\frac{w_1(t)}{w_0(t)} \equiv \theta$ (time-invariant win ratio) (Mao & Wang, 2021)
- **Estimation** with *censored* data: $\{\mathcal{H}^{(a)}(X^{(a)}), X^{(a)}\}$
 - $X^{(a)} = D^{(a)} \wedge C^{(a)}$, where $C^{(a)}$ is (independent) censoring time

Estimand Construction – Nonparametric

- **Goal**: estimating $w_a(\tau)$ using $\left\{\mathcal{H}_i^{(a)}\left(X_i^{(a)}\right), X_i^{(a)}\right\}$ $(i = 1, ..., n_a)$
 - No censoring before *τ*:

$$\widehat{w}_{a}(\tau) = (n_{1}n_{0})^{-1} \sum_{i=1}^{n_{a}} \sum_{j=1}^{n_{1-a}} I\left\{\mathcal{H}_{i}^{(a)}(\tau) \text{ wins against } \mathcal{H}_{j}^{(1-a)}(\tau)\right\}$$

- In general, inverse probability censoring weighting (IPCW; Dong et al., 2020b)
 - Weight the kernel by, e.g., $\frac{I(C_i^{(a)} \ge D_i^{(a)} \land \tau, C_j^{(1-a)} \ge D_j^{1-a} \land \tau)}{G_a(D_i^{(a)} \land \tau)G_{1-a}(D_j^{(1-a)} \land \tau)}$ to correct for censoring bias, where $G_a(t) = pr(C^{(a)} \ge t)$, or $pr(C^{(a)} \ge t \mid Z)$ if censoring depends on covariates Z (Dong et al., 2021)
 - R-package: WINS (Cui and Huang, 2022; CRAN: <u>https://CRAN.R-project.org/package=WINS</u>)

Estimand Construction – Nonparametric

• A variation: restricted mean time in favor (RMT-IF) (Mao, 2023, Biometrics)

 $\mu(\tau) = w_1(\tau) - w_0(\tau)$

- $w_a(\tau) = E(\text{Time } \mathcal{H}^{(a)}(\cdot) \text{ is better than } \mathcal{H}^{(1-a)}(\cdot) \text{ over } [0,\tau])$
- Re-expressed in terms of survival functions of component events
 - Plug-in Kaplan—Meier estimator, avoid IPCW
- R-package: <u>https://CRAN.R-project.org/package=rmt</u>
- <u>Example</u>: levamisole+fluorouracil versus control in a colon caner trial (Moertel, et al., 1990)

	au = 2.5 years			$\tau = 5.0$ years			$\tau = 7.5$ years		
	Est	SE	<i>p</i> -value	Est	SE	<i>p</i> -value	Est	SE	<i>p</i> -value
Pre-relapse	2.09	0.44	< 0.001	3.41	0.70	< 0.001	4.15	0.86	< 0.001
Survival	0.56	0.57	0.321	3.64	1.53	0.018	7.44	2.56	0.004
Overall	2.65	0.83	0.001	7.05	1.93	< 0.001	11.59	3.03	< 0.001

Note Est, estimate; SE, standard error.

Estimand Construction – Semiparametric

• Proportional win-fractions (PW) model

(Mao & Wang, 2021, Biometrics)

- $\frac{w_1(t)}{w_0(t)} \equiv \theta$ (time-invariant WR) for all $t \ge 0$ (can include covariates Z)
 - For Pocock's rule of pairwise comparison, satisfied under a Lehmann model (Oakes, 2016)
 - Treatment θ times as likely to win as compared to control (regardless of the restricting time)
- No IPCW is needed as WR is constant under proportionality
- R-package: <u>https://CRAN.R-project.org/package=WR</u>

Example: PW regression analysis of HF-ACTION Trial.

Covariate	Win Ratio	95% CI	<i>P</i> -value	
Training vs Usual	1.06	(0.95-1.19)	.275	
Non-Ischemic vs Ischemic	1.15	(1.02-1.31)	.027	
Age (decade)	1.02	(0.97-1.07)	.468	
Male vs Female	0.72	(0.63-0.82)	<.001	
CPX Duration (minute)	1.11	(1.09-1.13)	<.001	
Canada vs USA	1.34	(1.09-1.66)	.007	
France vs USA	1.95	(1.32-2.89)	.001	
Atrial Fibrillation (y vs n)	0.80	(0.70-0.92)	.002	
Diabetes (y vs n)	0.98	(0.87-1.11)	.726	

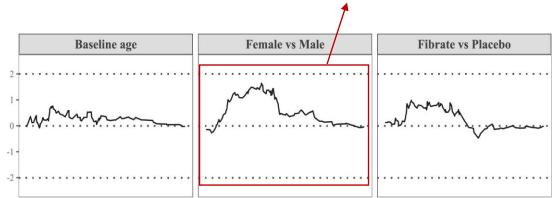
Note: CI, confidence interval.

Estimand Construction – Semiparametric

• Checking proportionality

- Plot residuals (observed vs model-based win-fractions) over time
 - Should see no systematic trend if proportionality is satisfied
 - Nonproportionality \rightarrow Estimand becomes a censoring mix of time-dependent WRs
 - Example: ACCORD trial

More wins at early times than accounted for by PW model



• Stratify on nonproportional covariates (Wang & Mao, 2022, Statistics in Medicine)

Estimand Construction – Semiparametric

• Similar **global models** for PIF and WO?

- Because $w_a(0) = 0$, difficult/impossible for
 - $w_1(t) w_0(t)$ or
 - $\{w_1(t) + 0.50(t)\}/\{w_0(t) + 0.50(t)\}$

to be constant over *t* (unless under the null)

- How to realistically constrain PIF/WO over time?
- Alternative: **local models** for a restricting time τ
 - E.g., $w_1(\tau \mid Z) w_0(\tau \mid Z) = g(\theta^T Z)$
 - IPCW (Dong et al., 2020b; 2021)? Pseudo-observation (Andersen & Pohar Perme, 2010)?

Informative Censoring

- Both approaches assume independent censoring
 - Random loss of follow-up
 - Study termination with (unselective) staggered entry
- Two types of dependent (informative) censoring
 - Dropout influenced by factors (e.g., baseline covariate) unaccounted for in the model
 - <u>Target</u>: a population where such dropout did not occur
 - <u>Solution</u>: covariate-adjusted IPCW (Dong et al., 2021)
 - "Intercurrent events" (ICH, 2020): treatment discontinuation, death from related causes
 - <u>Target</u>: a population where such events do occur
 - <u>Solution</u>: "Composite strategy" (e.g., death > treatment-discont. > minor symptoms); "While-on-treatment strategy" (adjusting for the time patient is on treatment)

Open Problems

• Efficiency of IPCW

- Utilize as many "complete cases" as possible
- Complete case \leftarrow win/loss determinate at τ
- Depends on outcome types and rule of comparison (Dong et al., 2020b)
- Augmentation using baseline and interim data (Tsiatis et al., 2008)?

• Regression of (local) win/loss estimands

• A general formulation

$$h\{w_1(\tau \mid Z), w_0(\tau \mid Z)\} = \theta^{\mathrm{T}} Z$$

- $h(\cdot, \cdot)$ is some link function
- IPCW? Pseudo-observations?

Summary

- GPC is useful in full utilization and ranking of outcomes
- ICH-E9 (R1) Addendum \rightarrow clearly specify the estimand
 - <u>Time-dependent win/loss fractions</u>: $w_a(t)$ (a = 1, 0)
 - Comparing an *uncensored* observation from treatment to one from control

Two approaches

- Nonparametric: e.g., $w_1(\tau)/w_0(\tau)$ (IPCW)
- Semiparametric: e.g., $w_1(t)/w_0(t) \equiv \theta$ for all t (model checking)

• Future work

- Improve the efficiency of IPCW
- More flexible regression methods

Acknowledgments

Clinical Trials

• Funding source

• NIH-NHLBI grant **R01HL149875** (12/01/2019—11/30/2022)

National Heart, Lung, and Blood Institute

• Data source

• HF-ACTION and ACCORD study data are provided by ACCORD study data are provided by BioLINCC of NHLBI

Novel Statistical Methods for Complex Time-to-Event Outcomes in Cardiovascular

Collaborators & Students

- KyungMann Kim, PhD
- Tuo Wang

- ACCORD Study Group (2010) Effects of intensive blood-pressure control in type 2 diabetes mellitus. *New England Journal of Medicine*, 362, 1575–1585.
- Akacha, M., Bretz, F., Ohlssen, D., Rosenkranz, G., & Schmidli, H. (2017a). Estimands and their role in clinical trials. *Statistics in Biopharmaceutical Research*, 9, 268–271.
- Akacha, M., Bretz, F., & Ruberg, S. (2017b). Estimands in clinical trials-broadening the perspective. *Statistics in Medicine*, 36, 5–19.
- Akacha, M., Bartels, C., Bornkamp, B., Bretz, F., Coello, N., Dumortier, T., ... & Vong, C. (2021). Estimands—What they are and why they are important for pharmacometricians. CPT: *Pharmacometrics & Systems Pharmacology*, 10, 279—282.
- Andersen, P. K. & Pohar Perme, M. (2010). Pseudo-observations in survival analysis. Statistical methods in medical research, 19(1), 71-99.
- Bebu, I. and Lachin, J.M. (2015) Large sample inference for a win ratio analysis of a composite outcome based on prioritized components. *Biostatistics*, 17, 178–187.
- Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two-sample problem. *Statistics in Medicine*, 29, 3245–3257.
- Dong, G., Huang, B., Chang, Y. W., Seifu, Y., Song, J., & Hoaglin, D. C. (2020a). The win ratio: Impact of censoring and follow-up time and use with nonproportional hazards. *Pharmaceutical Statistics*, 19, 168–177.
- Dong, G., Mao, L., Huang, B., Gamalo-Siebers, M., Wang, J., Yu, G., & Hoaglin, D. C. (2020b). The inverse-probability-ofcensoring weighting (IPCW) adjusted win ratio statistic: an unbiased estimator in the presence of independent censoring. *Journal of Biopharmaceutical Statistics*, 30, 882–899.

- Dong, G., Huang, B., Wang, D., Verbeeck, J., Wang, J., & Hoaglin, D. C. (2021). Adjusting win statistics for dependent censoring. *Pharmaceutical Statistics*, 20, 440–450.
- Finkelstein, D. M. & Schoenfeld, D. A. (2019). Graphing the win ratio and its components over time. *Statistics in Medicine*, 38, 53—61.
- ICH (2020). ICH-E9 (R1) Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials, Step 5. London: European Medicines Evaluation Agency.
- Ionan, A. C., Paterniti, M., Mehrotra, D. V., Scott, J., Ratitch, B., Collins, S., ... & Bretz, F. (2022). Clinical and Statistical Perspectives on the ICH E9 (R1) Estimand Framework Implementation. *Statistics in Biopharmaceutical Research*, accepted.
- Lynggaard, H., Bell, J., Lösch, C., Besseghir, A., Rantell, K., Schoder, V., & Lanius, V. (2022). Principles and recommendations for incorporating estimands into clinical study protocol templates. *Trials*, 23, 1—15.
- Luo, X., & Quan, H. (2020). Some meaningful weighted log-rank and weighted win loss statistics. *Statistics in Biosciences*, 12, 216–224.
- Luo, X., Tian, H., Mohanty, S., & Tsai, W. Y. (2015). An alternative approach to confidence interval estimation for the win ratio statistic. *Biometrics*, 71(1), 139–145.
- McCaw, Z. R., Tian, L., Wei, J., Claggett, B. L., Bretz, F., Fitzmaurice, G., & Wei, L. J. (2021). Choosing clinically interpretable summary measures and robust analytic procedures for quantifying the treatment difference in comparative clinical studies. *Statistics in Medicine*, 40, 6235—6242.

- Mao, L. (2019). On the alternative hypotheses for the win ratio. *Biometrics*, 75, 347–351.
- Mao, L. (2022). Nonparametric inference of general while-alive estimands for recurrent event. *Biometrics*, <u>https://doi.org/10.1111/biom.13709</u>.
- Mao, L. (2023). On restricted mean time in favor of treatment. *Biometrics*, 79, 61–72.
- Mao, L. and Kim, K. (2021). Statistical models for composite endpoints of death and non-fatal events: a review. *Statistics in Biopharmaceutical Research*, 13, 260–269.
- Mao, L., Kim, K. and Li, Y. (2022). On recurrent-event win ratio. *Statistical Methods in Medical Research*, 31, 1120–1134.
- Mao, L., Kim, K., and Miao, X. (2022). Sample size formula for general win ratio analysis. *Biometrics*, 78, 1257–1268.
- Mao, L., and Lin, D. (2016). Semiparametric regression for the weighted composite endpoint of recurrent and terminal events. *Biostatistics*, 17, 390–403.
- Mao, L. and Wang, T. (2021). A class of proportional win-fractions regression models for composite outcomes. *Biometrics*, 77, 1265–1275.
- Moertel, C.G., Fleming, T.R., Macdonald, J.S., Haller, D.G., Laurie, J.A., Goodman, P.J. et al. (1990). Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. *New England Journal of Medicine*, 322, 352–358.
- Oakes, D. (2016). On the win-ratio statistic in clinical trials with multiple types of event. *Biometrika*, 103, 742–745.

- O'Connor, C. M., Whellan, D. J., Lee, K. L., Keteyian, S. J., Cooper, L. S., Ellis, S. J. et al. (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. *Journal of the American Medical Association*, 301, 1439–1450.
- Tsiatis, A. A., Davidian, M., Zhang, M., & Lu, X. (2008). Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. *Statistics in Medicine*, 27, 4658–4677.
- Wang, T. and Mao, L. (2022). Stratified proportional win-fractions regression analysis. *Statistics in Medicine*, 41, 5305–5318.