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Background: pragmatic trials
▶ Pragmatic trials often compare

interventions or alternative delivery
approaches to evaluate impact on
outcomes under routine practice
conditions

▶ Challenges arise as we move toward
pragmatism

▶ PRECIS-II
▶ treatment effect estimands as

increasingly important concept1

▶ Many pragmatic trials report null
intention-to-treat (ITT) effect

▶ Provide an example to go beyond ITT
estimand in a recent pragmatic trial with
survival outcome

(a) traditional RCT

(b) pragmatic trial

1Kahan, B. C., Cro, S., Li, F., & Harhay, M. O. (2023). Eliminating ambiguous treatment
effects using estimands. American Journal of Epidemiology, kwad036.
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An example: ADAPTABLE pragmatic trial
▶ ADAPTABLE (Aspirin Dosing: A Patient-Centric Trial Assessing Benefits and

Long-Term Effectiveness) is a pragmatic trial to study the effectivenss of two
aspirin dosing strategies for patients with established cardiovascular diseases2.

▶ Treatment assignment: 81-mg v.s. 325-mg aspirin dosage

▶ Outcome: a composite outcome of death from any cause and hospitalization
for stroke or myocardial infraction (time-to-event)

▶ Complication: not all patients take the assigned aspirin dosage.

2Jones, W., Mulder, H., and others (2021). Comparative effectiveness of aspirin dosing in cardiovascular
disease. New England Journal of Medicine, 384(21), 1981-1990.
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Average treatment effect

▶ Baseline covariates: age, gender, race, ethnicity, medical and diseases
history, aspirin dosage use prior to the trial, etc.

▶ Up until the maximum follow-up time (38 months after randomization),
the outcome occurred in 7.5% and 7.4% of participants in the 81-mg
arm and the 325-mg arm, respectively.

▶ relatively rare events

▶ As expected, the primary analysis found a null average treatment effect

▶ To confirm no overall effect, we applied a covariate-adjusted approach
to report the ITT effect

▶ augmented estimator for the causal survival curves (Bai et al, 2013; Zhang
and Schaubel, 2012)
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ITT effect estimates

ITT Survival Probability
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Figure: The ITT effects and corresponding survival probability curve, ADAPTABLE trial, 2016–2020. The
ITT effects are obtained based on the doubly robust estimator by Bai et al. (2013)3.

3Bai, X., Tsiatis, A. A., & O’Brien, S. M. (2013). Doubly-robust estimators of treatment-specific survival
distributions in observational studies with stratified sampling. Biometrics, 69(4), 830-839.
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Motivating questions

Recognizing the potential impact of noncompliance

▶ Is one specific aspirin dosage more effective than the other among
compliers?

▶ the treatment efficacy

▶ Is there treatment effect heterogeneity among patients with different
compliance behaviour types that contribute to the null ITT effect?

▶ ‘direct effect’ of treatment assignment (possibly due to other mechanisms
that are unmeasured)

▶ To what extent the study results are sensitive to unverifiable
assumptions?

Goal: seek model-robust methods and sensitivity strategies to address
noncompliance with a survival outcome
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Notation

▶ Data structure

▶ 𝑿: pre-treatment covariates

▶ 𝑍: treatment assignment (1 if 325-mg aspirin and 0 if 81-mg aspirin)

▶ 𝑆: actual treatment received

▶ 𝑇 : survival time of interest—partially observed due to right censoring.
Instead, we only observe (𝑈, 𝛿) =

(
min(𝑇, 𝐶), I(𝑇 ≤ 𝐶)

)
, where 𝐶 is the

censoring time

▶ Pursue potential outcomes framework and define

▶ 𝑆(𝑧): the potential value of 𝑆 when setting the assignment to 𝑧 ∈ {0, 1}.
▶ 𝑇 (𝑧) & 𝐶 (𝑧): the potential value of 𝑇 and 𝐶 when setting the assignment

to 𝑧 ∈ {0, 1}.
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Estimands

▶ Under the principal stratification framework, we partition the study
population into 4 principal strata, based on the joint potential values
𝐺 = {𝑆(1), 𝑆(0)}:
▶ 𝐺 = {1, 1}: always high-dose (325-mg) takers
▶ 𝐺 = {0, 0}: always low-dose (81-mg) takers
▶ 𝐺 = {1, 0}: compliers
▶ 𝐺 = {0, 1}: defiers

▶ abbreviate the above four principal strata as {𝑎, 𝑛, 𝑐, 𝑑}, respectively.

▶ Define the Principal Survival Causal Effect (PSCE):

Δ𝑔 (𝑢) = S1,𝑔 (𝑢) − S0,𝑔 (𝑢)

where S𝑧,𝑔 = P(𝑇 (𝑧) > 𝑢 |𝐺 = 𝑔) and 𝑔 ∈ {𝑎, 𝑛, 𝑐, 𝑑}.
▶ Δ𝑐 (𝑢): ‘efficacy’ of the treatment in the ideal compliance condition.
▶ Δ𝑎 (𝑢) and Δ𝑛 (𝑢): ‘direct effect’ due to treatment assignment
▶ do not pursue strata-specific HR as estimands
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Assumptions

Five structural assumptions to identify the PSCE.

Set I: standard assumptions in causal survival analysis (Chen et al, 2001;
Zhang and Schaubel, 2012; Bai et al. 2013)

A1. (SUTVA) For all 𝑖, we have 𝑆𝑖 (𝑧) = 𝑆𝑖 , 𝑇𝑖 (𝑧) = 𝑇𝑖 , and 𝐶𝑖 (𝑧) = 𝐶𝑖 if
patient 𝑖 was assigned to treatment 𝑍𝑖 = 𝑧.

A2. (Conditional randomization) {𝑇 (1), 𝑇 (0), 𝑆(1), 𝑆(0)} ⊥ 𝑍 |𝑿.

▶ in ADAPTABLE, a stronger version, {𝑇 (1), 𝑇 (0), 𝑆(1), 𝑆(0), 𝑿} ⊥ 𝑍 , is
satisfied by study design.

▶ use a more general assumption to allow considerations of conditional
randomized trials and observational studies.

A3. (Covariate-dependent censoring) 𝑇 (𝑧) ⊥ 𝐶 (𝑧) |{𝑍 = 𝑧, 𝑆, 𝑿}.
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Assumptions - cont’d

Set II: additional assumptions

A4. (Monotonicity) 𝑆𝑖 (1) ≥ 𝑆𝑖 (0) for all 𝑖.

▶ excludes defiers and can be plausible for ADAPTABLE

A5. (Prinicipal ignorability) For all 𝑢 ≥ 0, we have

P (𝑇 (1) ≥ 𝑢 |𝐺 = 𝑎, 𝑿) = P (𝑇 (1) ≥ 𝑢 |𝐺 = 𝑐, 𝑿) ,
P (𝑇 (0) ≥ 𝑢 |𝐺 = 𝑐, 𝑿) = P (𝑇 (0) ≥ 𝑢 |𝐺 = 𝑛, 𝑿) .

▶ assumes sufficient baseline information to capture characteristics
influencing both the noncompliance behavior and the potential outcomes

▶ extension of Ding and Lu. (2016); Jiang et al. (2022) to causal survival
analysis

▶ a stronger version: 𝐺 ⊥ 𝑇 (𝑧) |𝑿 for 𝑧 = 0, 1

Both unverifiable from observed data and sensitivity analysis can help.
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Possible working models

1. Assignment mechanism:

M𝜋 : 𝜋(𝑿) = P(𝑍 = 1|𝑿), the propensity score (Rosenbaum and Rubin,
1983).

▶ in ADAPTABLE, 𝜋(𝑿) = 0.5 by randomization, but modeling this
process may gain efficiency (Zeng et al, 2021; Li, Buchanan, Cole, 2022)

2. Noncompliance:

M𝑒: 𝑒𝑔 (𝑿) = P(𝐺 = 𝑔 |𝑿) for 𝑔 ∈ {𝑎, 𝑐, 𝑛} the principal scores (Ding
and Lu, 2016).

▶ define 𝑒𝑔 = 𝐸 [𝑒𝑔 (𝑿)] as strata proportion

▶ by monotonicity, we have 𝑒𝑐 (𝑿) = 𝑝1 (𝑿) − 𝑝0 (𝑿), 𝑒𝑎 (𝑿) = 𝑝0 (𝑿), and
𝑒𝑛 (𝑿) = 1 − 𝑝1 (𝑿), where 𝑝𝑧 (𝑿) = P(𝑆 = 1|𝑍 = 𝑧, 𝑿) is the observed
probability for receiving the 325-mg dosage.

▶ Can fit logistic regressions to obtain �̂�(𝑿) and 𝑝𝑧 (𝑿).
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Possible working models - cont’d

3. Censoring:

M𝐶 : S𝐶
𝑧𝑠 (𝑢 |𝑿) = P(𝐶 ≥ 𝑢 |𝑍 = 𝑧, 𝑆 = 𝑠, 𝑿)

▶ survival function of the censoring time within observed cell
(𝑍 = 𝑧, 𝑆 = 𝑠).

4. Survival outcome (of interest):

M𝑇 : S𝑧𝑠 (𝑢 |𝑿) = P(𝑇 ≥ 𝑢 |𝑍 = 𝑧, 𝑆 = 𝑠, 𝑿)
▶ survival function of the time-to-event outcome of interest within observed

cell (𝑍 = 𝑧, 𝑆 = 𝑠)

▶ Can fit Cox proportional hazards models to obtain Ŝ𝐶
𝑧𝑠 (𝑢 |𝑿) and

Ŝ𝑧𝑠 (𝑢 |𝑿)
▶ working models and no attempt to interpret HR as causal parameter
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Moment estimators

▶ We do not need all models to point identify PSCEs

▶ We characterized 3 moment-type estimators of Δ𝑔 (𝑢), each depending
on part of, but not all of, the 4 working models M𝜋 , M𝑒, M𝐶 , and M𝑇 .

M𝜋 M𝑒 M𝐶 M𝑇

(IPTW) (PSW) (IPCW) (OM)
Δ̂
(1)
𝑔 (𝑢) ✓ ✓ ✓

Δ̂
(2)
𝑔 (𝑢) ✓ ✓

Δ̂
(3)
𝑔 (𝑢) ✓ ✓

▶ Δ̂
(1)
𝑔 (𝑢), Δ̂(2)

𝑔 (𝑢), and Δ̂
(3)
𝑔 (𝑢) consistent to Δ𝑔 (𝑢) if M𝜋+𝑒+𝐶 , M𝑒+𝑇 ,

and M𝜋+𝑇 is correctly specified, respectively

▶ M𝑎+𝑏 is the intersection model, hence all 3 estimators are only singly
robust
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Combing multiple working models with complete data
▶ Ideal to leverage all working models to improve robustness and efficiency

▶ Suppose the true failure time can be observed (no censoring) with the complete
data A = {𝑿, 𝑍, 𝑆, 𝑇}.

▶ Adapted from Jiang et al. (2022)4, a multiply robust estimator of S1,𝑐 (𝑢) can be
obtained by solving the following estimating equation,

P𝑛

[
𝜓𝑚𝑟

1,𝑐 (A)
]
= 0,

where

𝜓𝑚𝑟
1,𝑐 (A) = 𝑒𝑐 (𝑿 )

𝑝1 − 𝑝0

𝑆

𝑝1 (𝑿 )
𝑍

𝜋 (𝑿 ) I(𝑇 ≥ 𝑢) − S1,𝑐 (𝑢)

+ 𝑒𝑐 (𝑿 )
𝑝1 − 𝑝0

(
1 − 𝑍

𝜋 (𝑿 )

)
S11 (𝑢 |𝑿 )

+ S11 (𝑢 |X)
𝑝1 − 𝑝0

[
1 − 𝑍

1 − 𝜋 (𝑿 ) (𝑆 − 𝑝0 (𝑿 ) ) + 𝑝0 (𝑿 )
𝑝1 (𝑿 )

𝑍

𝜋 (𝑿 ) (𝑝1 (𝑿 ) − 𝑆)
]
,

▶ The first row: a weighting-based estimating equation of S1,𝑐 (𝑢); the last two
rows: augmented zero-mean terms based on outcome modeling.

4Jiang, Z., Yang, S., & Ding, P. (2022). Multiply robust estimation of causal effects under
principal ignorability. JRSSB, 84(4), 1423-1445.
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Accommodate right-censoring

▶ Observed data subject to censoring: O = {𝑿, 𝑍, 𝑆,𝑈, 𝛿}

▶ Key idea: identify a set of unbiased estimating functions that depend
only on the observed data O:

𝜓1,𝑐 (O) =
𝛿𝜓𝑚𝑟

1,𝑐 (A)
S𝐶
𝑍𝑆

(𝑈 |𝑿)
+
∫

ℎ(𝑟, 𝑍, 𝑆, 𝑿)𝑑𝑀𝐶
𝑍𝑆 (𝑟 |𝑿),

where ℎ(𝑡, 𝑍, 𝑆, 𝑿) can be arbitrary function and 𝑑𝑀𝐶
𝑍𝑆

(𝑡 |𝑿) is the
censoring process martingale (within in cell defined by (𝑍, 𝑆)).
▶ The resulting estimator is an augmented inverse probability of weighted

complete-case (AIPWCC) estimator (Tsiatis, 2006)

▶ The optimal choice of ℎ(𝑡, 𝑍, 𝑆, 𝑿) to maximize efficiency is

ℎ(𝑡, 𝑍, 𝑆, 𝑿) =
E[𝜓𝑚𝑟

1,𝑐 (A)|𝑇 ≥ 𝑡, 𝑍, 𝑆, 𝑿]
S𝐶
𝑍𝑆

(𝑡 |𝑿)
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The proposed estimator

▶ After some algebra, the proposed estimator has the following explicit form

Ŝ𝑚𝑟
1,𝑐 (𝑢)=P𝑛

{
�̂�𝑐 (𝑿)
𝑝1 − 𝑝0

𝑆

𝑝1 (𝑿)
𝑍

�̂�(𝑿)

[
I(𝑈 ≥ 𝑢)
Ŝ𝐶

11 (𝑢 |𝑿)
+Ŝ11 (𝑢 |𝑿)

∫ 𝑢

0

𝑑𝑀𝐶
11 (𝑟 |𝑿)

Ŝ11 (𝑟 |𝑿)Ŝ𝐶
11 (𝑟 |𝑿)

]
+ Ŝ11 (𝑢 |𝑿)

𝑝1 − 𝑝0

[
1 − 𝑍

1 − �̂�(𝑿) (𝑆 − 𝑝0 (𝑿)) +
𝑝0 (𝑿)
𝑝1 (𝑿)

𝑍

�̂�(𝑿) (𝑝1 (𝑿) − 𝑆)
]

+ �̂�𝑐 (𝑿)
𝑝1 − 𝑝0

(
1 − 𝑍

�̂�(𝑿)

)
Ŝ11 (𝑢 |𝑿)

}
,

where P𝑛 [𝑉] = 1
𝑛

∑𝑛
𝑖=1 𝑉𝑖 is the empirical average operator

▶ Similar ideas to estimate counterfactual survival functions in other strata

▶ Bootstrap variance
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Multiple robustness

▶ Result. (Multiple robustness)
Suppose that Assumptions 1–5 hold. For all 𝑧 ∈ {0, 1} and
𝑔 ∈ {𝑐, 𝑛, 𝑎}, Ŝ𝑚𝑟

𝑧,𝑔 (𝑢) is consistent to S𝑧,𝑔 (𝑢) under the union model
M𝜋+𝑒+𝐶 ∪M𝜋+𝑇 ∪M𝑒+𝑇 . As a consequence, Δ̂𝑚𝑟

𝑔 (𝑢) is also consistent
to Δ𝑔 (𝑢) under M𝜋+𝑒+𝐶 ∪M𝜋+𝑇 ∪M𝑒+𝑇 for all 𝑔 ∈ {𝑐, 𝑛, 𝑎}.

▶ remark 1: the result is general and can be applied to observational
study (where modeling assignment M𝜋 is necessary for removing
confounding bias)

▶ remark 2: in ADAPTABLE, because M𝜋 is known under
randomization, Δ̂𝑚𝑟

𝑔 (𝑢) becomes a doubly robust estimator, in that
consistency holds under the union model M𝑒+𝐶 ∪M𝑇

▶ correct weighting or correct outcome modeling, but not necessarily both

▶ simulations confirm the robustness property
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Application to ADAPTABLE

▶ Working models (all models adjusting for all
baseline characteristics)
▶ M𝜋 : logistic regression
▶ M𝑒: logistic regression
▶ M𝐶 : Cox regression
▶ M𝑇 : Cox regression

▶ Proportion of each principal strata estimated
from principal scores (Figure)

▶ For any 𝑉 ∈ 𝑿, we calculate its estimated
mean and variance within each strata Figure:The estimated proportions of

each strata (i.e., �̂�𝑔)

▶ Ê[𝑉 |𝐺 = 𝑔] = P𝑛
[
�̂�𝑔 (𝑿 )
�̂�𝑔

𝑉

]
▶ V̂ar[𝑉 |𝐺 = 𝑔] := 𝑠2

𝑔 given by the principal score weighted variance
▶ useful in describing and comparing demographic and clinical characteristics

among different compliance strata.
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Strata characteristics
▶ Always low-dose: older, higher prevalence of cardiovascular diseases and worse medical

history, more 81-mg aspirin users
▶ Compliers: less non-internet users, more white patients
▶ Always high-dose: youngest, less medical conditions, more 325-mg aspirin users
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Balance check

▶ Why balance check? To empirically check evidence for principal score model
adequacy

▶ Balance metrics: The weighted standardized mean differences (SMDs) of a
given covariate 𝑉 across the four observed (𝑍, 𝑆)-strata, (𝑍 = 1, 𝑆 = 1),
(𝑍 = 0, 𝑆 = 1), (𝑍 = 1, 𝑆 = 0), and (𝑍 = 0, 𝑆 = 0):

SMD𝑐 =
1
𝑠𝑐

����P𝑛 [
𝑍𝑆W1,𝑐 (𝑿)𝑉
P𝑛 [𝑍𝑆]

−
(1 − 𝑍) (1 − 𝑆)W0,𝑐 (𝑿)𝑉
P𝑛 [(1 − 𝑍) (1 − 𝑆)]

] ���� ,
SMD𝑛 =

1
𝑠𝑛

����P𝑛 [
𝑍 (1 − 𝑆)W1,𝑛 (𝑿)𝑉
P𝑛 [𝑍 (1 − 𝑆)] −

(1 − 𝑍) (1 − 𝑆)W0,𝑛 (𝑿)𝑉
P𝑛 [(1 − 𝑍) (1 − 𝑆)]

] ���� ,
SMD𝑎 =

1
𝑠𝑎

����P𝑛 [
𝑍𝑆W1,𝑎 (𝑿)𝑉
P𝑛 [𝑍𝑆]

−
(1 − 𝑍)𝑆W0,𝑎 (𝑿)𝑉
P𝑛 [(1 − 𝑍)𝑆]

] ���� ,
where W𝑧,𝑔 (𝑿) for 𝑧 ∈ {0, 1} and 𝑔 ∈ {𝑐, 𝑎, 𝑛} are specified weights.

▶ When W𝑧,𝑔 (𝑿) = 1, the SMDs measure the systematic difference of 𝑋 across
different (𝑍, 𝑆)-strata, and therefore reflects heterogeneity of 𝑋 due to patients’
noncompliance behavior

▶ When W𝑧,𝑔 (𝑿) is set to the (true) principal score weight, SMDs should be 0

19 / 25



Balance check - cont’d
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Figure: Balance check for baseline characteristics. The red ‘•’ symbol indicates the unweighted SMDs and
the blue ‘▲’ symbol indicates the weighted SMDs by the principal score weighting.
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Principal causal effect estimates
▶ Implement the proposed estimator of the PSCEs among the always low-dose,

compliers, and always high-dose
Always low−dose takers Compliers Always high−dose takers
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Figure: The principal survival causal effects (PSCEs) and the principal survival probability curves
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Sensitivity analysis for principal ignorability (PI)
▶ PI holds if there is no residual confounding between 𝐺 and 𝑇 contional on 𝑿

▶ PI violated if there exists unmeasured confounding (𝑈) between 𝐺 and 𝑇

▶ One potential 𝑈: digestive disease, which may increase the risk of death.
Moreover, people with digestive diseases may prefer not to take high
aspirin dosage due to its risk on bleeding.

▶ Consider sensitivity functions to measure departure from PI:

Y1 (𝑡, 𝑿) =
P(𝑇 (1) ≥ 𝑡 |𝐺 = 𝑐, 𝑿)
P(𝑇 (1) ≥ 𝑡 |𝐺 = 𝑎, 𝑿) = exp

{
b1 ×

(
𝑡

𝑡max

)}
Y0 (𝑡, 𝑿) =

P(𝑇 (0) ≥ 𝑡 |𝐺 = 𝑐, 𝑿)
P(𝑇 (0) ≥ 𝑡 |𝐺 = 𝑛, 𝑿) = exp

{
b0 ×

(
𝑡

𝑡max

)}
,

▶ We use {b1, b0} to control the pattern of the two sensitivity functions

Scenario b1 b0 Interpretation
Benchmark 0 0 PI holds

I − + always low-dose takers < compliers < always high-dose takers
II + − always high-dose < compliers < always low-dose takers
III − − compliers < {always high-dose, always low-dose takers}
IV + + {always high-dose, always low-dose takers} < compliers

Note: ‘A<B’ means that A is less healthier than B due to unobserved confounders (i.e.,𝑈).
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Choice of sensitivity parameter

▶ For fixed {b1, b0}, we develop a bias-corrected estimator for PSCE,
Δ̂𝑏𝑐
𝑔 (𝑢), which is consistent under M𝜋+𝑒+𝐶 ∪M𝜋+𝑇 .

▶ Under randomization, doubly robust (M𝑒+𝐶 ∪M𝑇 )

▶ A plausible scenario: always low-dose takers often less healthier than
compilers; always high-dose taker often the healthiest.

▶ We choose b1 ∈ [log(0.9), 0] and b0 ∈ [0, log(1.1)], corresponding to
Scenario I in previous table

▶ since b1 and b0 defined based on conditional causal survival function,
there is a bound on these values

▶ a simple choice but can extend to b1 (𝑿) and b0 (𝑿)
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Sensitivity analysis: results

PI holds (��,��)=(log0.95,0) (��,��)=(log0.9,0) (��,��)=(0,log1.05) (��,��)=(0,log1.1)
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Discussion

▶ Carried out sensitivity analysis for monotonicity (A4) – results robust to
this assumption in ADAPTABLE (back-up slides)

▶ Some conclusions under PI:

▶ (1) always high-dose takers appear to benefit
▶ (2) compliers slightly benefit
▶ (3) always low-dose takers appear not to benefit

▶ (2) and (3) may change if PI does not hold (depending on how rich the
collected baseline covariates are)

▶ mechanisms of these effects require further studies

▶ Limitations:

▶ composite outcomes
▶ complete case analysis without addressing treatment discontinuation
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Simulation study (ignorable assignment)
▶ Scenario 1–4: the union model M𝜋+𝑒+𝐶 ∪M𝜋+𝑇 ∪M𝑒+𝑇 is correctly

specified.
▶ Scenario 5: all models are misspecified.
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Back-up: Basline table
▶ Balance check for baseline characteristics in each treatment arm
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Back-up: Sensitivity for monotonicity
▶ If monotonicity does not hold, defiers exist and we have four strata

𝐺 ∈ {𝑐, 𝑛, 𝑎, 𝑑}.

▶ The following sensitivity parameter captures the deviation from monotonicity:

Z =
P(𝐺 = 𝑑 |𝑿)
P(𝐺 = 𝑐 |𝑿) ,

—ratio between the probability of defiers and compliers given 𝑿.

▶ Z takes values from 0 to ∞, and monotonicity holds with Z = 0.

▶ if we further assume that the treatment assignment has a positive effect on
the treatment receipt (i.e., E[𝑆(1) − 𝑆(0)] ≥ 0), then Z is bounded by

0 ≤ Z ≤ 1 − 𝑝1 − 𝑝0
min(𝑝1, 1 − 𝑝0)

,

where 𝑝𝑧 = E[𝑝𝑧 (𝑿)].
▶ in ADAPTABLE, the estimated bound is Z ∈ [0, 0.103].

▶ For a fixed value Z , we developed a modified estimator, which is consistent
under M𝜋+𝑒+𝐶 ∪M𝜋+𝑇 ∪M𝑒+𝑇 for any 𝑔 ∈ {𝑐, 𝑛, 𝑎, 𝑑}.
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Back-up: Sensitivity for monotonicity
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