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Component-Wise Censoring of Progression-Free Survival

Patient 
died

Scans to detect progression 

Interval censored + Right censored = Component-wise censored
progression death progression-free survival
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Defining “Component-Wise Censoring”

1 Right censored death and an interval censored non-fatal event:
the focus of this talk

2 Different right censoring times by event
Diao G., Zeng D., Ke C., Ma H., Jiang Q. and Joseph G Ibrahim.
Semiparametric regression analysis for composite endpoints subject
to componentwise censoring. Biometrika, 105(2): 403–418.

3 Multiple interval censored components with different censoring
intervals (i.e., events assessed on different schedules)

• The term “dual censoring” has been used to refer to 1 and 2
Boruvka A. and R. Cook 2016. Sieve estimation in a Markov
illness-death process under dual censoring. Biostatistics, 17(2),:
350–363.
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Handling Component-Wise Censoring: 3 Approaches

How to handle uncertainty in the progression status between visits?

1 Fill in the individual missing data, similar to last observation carried
forward

2 Characterize the progression pattern in the population by smoothing
across patients/visits with a kernel estimator

3 Likelihood-based methods
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Modifying Data to Apply the Kaplan-Meier Estimator
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FDA recommended approach for estimating progression-free survival when
progression is detected at visits:
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FDA recommended approach for estimating progression-free survival when
progression is detected at visits:
• Treat progression as happening on the day it was observed
• Assume no progression between last visit and death
• Censor patients without observed death or progression at last visit
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When You Look Matters!

Panageas K., Ben-Porat L., Dickler M., Chapman P. and D. Shrag 2007. When
You Look Matters: The Effect of Assessment Schedule on Progression-Free
Survival. J Natl Can Inst, 99(6): 428-432.

9 / 34



Kernel Estimator for Event-Free Survival

We developed an intuitive non-parametric estimator of event-free survival
probability, analogous to the Kaplan-Meier estimator

Eaton A., Y. Sun, J. Neaton and X. Luo 2022. Nonparametric
estimation in an illness-death model with component-wise censoring.
Biometrics, 78(3):1168-1180.
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Notation

• Let D denote death time, subject to right censoring at time C

• Let X = min(D,C ) and let ∆ = I (D ≤ C )

• Let Y (·) be an indicator for non-fatal-event-free status

• Let N(·) be the visit counting process; Y (·) will be intermittently
observed at times that N(·) jumps

• Assume C is independent of {Y (·),D} and that the potential visit
process is independent of {Y (·),D,C}
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Observed Data

1 2 3 4 5 6

Y(t)

N(t) N*(t)

D

Y(1)=1
Y(2)=1
Y(3)=0

X=5,r=1
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Proposed Estimator

• We want to estimate P(D ≥ t,Y (t) = 1)

• We break the estimand into two pieces to eliminate the
component-wise censoring problem

P(D ≥ t,Y (t) = 1) = P(D ≥ t)× P(Y (t) = 1|D ≥ t)

• P(D ≥ t) can be estimated using the Kaplan-Meier estimator
• Think of Y (·) as intermittently observed; estimate P(Y (t) = 1|D ≥ t)

using a kernel estimator
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Proposed Estimator

Estimate r(t) = E{Y (t)|D ≥ t} = P(Y (t) = 1|D ≥ t) with

r̂h(t) =

∑n
i=1

∫ τ
0 Kh(t − s)Yi (s)dNi (s)∑n

i=1

∫ τ
0 Kh(t − s)dNi (s)

, t ∈ [h, τ − h]

where Kh(x) = h−1K (x/h) is a kernel function with bandwidth h
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Epanechnikov Kernel
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Proposed Estimator

P̂{D ≥ t,Y (t) = 1} = ŜD(t)× r̂h(t)

• We avoided the component-wise censoring problem by breaking the
estimand into parts that can be estimated with established methods

P(D ≥ t,Y (t) = 1) = P(D ≥ t)× P(Y (t) = 1|D ≥ t)

• ŜD(t) is the Kaplan-Meier estimator

• r̂h(t) is a kernel estimator of r(t) = P(Y (t) = 1|D ≥ t)
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Simulation Results
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Likelihood-Based Estimation

• Likelihood reflects the information we have (and lack) under
component-wise censoring

• Estimation via maximum likelihood

• Parametric assumption: constant transition intensities over time

• Implemented in the msm R package

Kalbfleisch J. D. and J. F. Lawless 1985. The analysis of panel data under a
Markov assumption. Journal of the American Statistical Association,
80(392):863-871.

Jackson C. H. 2011. Multi-state models for panel data: The msm package for R.
Journal of Statistical Software, 38(8).
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Model + Parameters

• Let qrs be the intensity or instantaneous risk of moving from state r
to state s

• Let prs(t) be the probability of being in state s at time u + t, given
one was in state r at time u
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Likelihood Formulation

Likelihood contribution for a participant in state 0 at time t1 and state 1
at time t2

p00(t1)p01(t2 − t1)
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Likelihood Formulation

Likelihood contribution for a person who died at time t1 with no visits to
assess the non-fatal event ∑

m∈{0,1}

p0,m(t1)qm,2
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Defining States
Likelihood contribution is not clear if components that are censored
differently share a state

Likelihood contribution for a person who died at time t1 with no visits to
assess the non-fatal event

p0,0(t1)q0,1?

p0,1(t1)?
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Events Assessed on Different Schedules
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Loosening Parametric Assumptions

• Can allow q(t) to be piecewise constant with fixed changepoints
• Non-parametric MLE has been established by Frydman and Szarek

Frydman H. and M. Szarek 2009. Nonparametric estimation in a
Markov ”illness-death” process from interval censored observations
with missing intermediate transition status. Biometrics, 65(1):
143-51.

• Boruvka and Cook use a sieve, i.e. a finite-dimensional approximation
for the cumulative transition intensity whose size increases with n

Boruvka A. and R. Cook 2016. Sieve estimation in a Markov
illness-death process under dual censoring. Biostatistics, 17(2),:
350–363.
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Data Application: the MRFIT Trial

• RCT aiming to reduce the risk of coronary heart disease in high-risk
men using a multifactor intervention (smoking cessation, treatment
for hypertension, dietary advice)

• Followed 12866 men (6438 control, 6428 treatment) for ≥ 6 years

• We focus on six non-fatal cardiovascular events
• Impaired renal function
• Congestive heart failure
• Myocardial infarction by serial ECG change
• Clinical myocardial infarction (CMI)
• Surgery for coronary artery disease
• Stroke

• Death and CMI are right censored

• Information on other non-fatal cardiovascular events was collected at
annual visits, and exact dates were not ascertained, leading to
component-wise censoring
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Data Application: the MRFIT Trial

* Impaired renal function, congestive heart failure, myocardial infarction by serial
ECG change, surgery for coronary artery disease or stroke

Multiple Risk Factor Intervention Trial Research Group 1982. Multiple Risk
Factor Intervention Trial: Risk factor changes and mortality results. JAMA,
248(12):1465-1477.
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Data Application: the MRFIT Trial
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Estimating the Hazard Ratio for Event-Free Survival

• Common approach: Cox model on modified data

• If the visit process is the same in both arms
• Hazard ratio is asymptotically biased towards the null

Zeng L., Cook R., Wen L. and A. Boruvka 2015. Bias in
progression-free survival analysis due to intermittent
assessment of progression. Statistics in Medicine, 37(12):
3181-93.

• Bias is relatively small
Eaton A. and E. Zabor 2022. Analysis of composite endpoints
with component-wise censoring in the presence of differential
visit schedules. Statistics in Medicine, 41(9): 1599-1612.

• Likelihood-based approaches: constrain the treatment effect on 0 → 1
and 0 → 2 transition intensities to be equal
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Data Application: the MRFIT Trial

Table: Hazard ratio estimates and 95% CIs

Event Naive Cox model Parametric model Parametric model
with constraint

Composite (death/CMI 0.93 (0.84, 1.03) 0.92 (0.83, 1.02)
+ other cardiovascular events)
Death/CMI 0.99 (0.87, 1.13)
Other cardiovascular events 0.82 (0.69, 0.97)

Results from the sieve estimator were very similar to the parametric model
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Key Takeaways

• Component-wise censored data is common in clinical trials and
routinely analyzed with naive methods
• Analysis methods differ in how they deal with uncertainty in non-fatal

event status between visits
• Naive approach fills in data, similar to last observation carried forward
• The proposed kernel estimator smooths over visits close to time t to

estimate P(Y (t) = 1|D ≥ t)
• Multistate models allow us to express the likelihood for a wide variety

of observation schemes, including component-wise censoring, and
estimate quantities of interest via maximum likelihood
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