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Some Canonical Multistate Processes
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S = {0, 1, . . . } is state space

with absorbing states A

{Z(s), 0 < s} is process
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Intensity Functions

• X = 1 for treated and X = 0 for control and {V (s), 0 < s} is a marker process

• H(t) = {Z(s), V (s), 0 < s < t,X}

Intensity function of a k −→ l transition Andersen et al. (1993)

lim
∆t↓0

P (Z(t + ∆t−) = l | Z(t−) = k,H(t))

∆t
= λkl(t | H(t)) k, l ∈ S
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Remarks

Intensity-based models play a critical role in understanding causal effects of life

history processes Aalen, Røysland and Gran (2012)

Causal effects are manifest over time so attempts to understand causal mecha-

nisms should be based on intensity functions
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Remarks

Intensity-based models play a critical role in understanding causal effects of life

history processes Aalen, Røysland and Gran (2012)

Causal effects are manifest over time so attempts to understand causal mecha-

nisms should be based on intensity functions

Conditioning on the life history induces “collider bias” Hernán (2010)

Clinical trials are not primarily designed to enhance understanding of causal mech-

anisms but rather to test and estimate effects on marginal process features and

facilitate regulatory decision making
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A Simple Case: Recurrent Events

0 1 2 ⋯

If λk,k+1(t | Z(t−) = k,H(t)), k = 0, 1, . . . the rate function

ρ(t | X) = lim
∆t↓0

P (Z(t + ∆t−)− Z(t−) = 1 | X)

∆t

is

ρ(t | X) = EH(t)

{
λk,k+1(t | Z(t−) = k,H(t)) | X

}

A working Poisson model ρ(t | X) = ρ0(t)eγX gives Lawless (1995)

µ(t | X) = µ0(t)eγX

Andersen-Gill (1982) model offers a basis for causal inference. Lin et al. (2000)
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Multistate Processes Cook and Lawless (2018)

For Markov processes

P(t | X) =
∏
(0,t]

{I + dΛ(u | X)}

Marginal features for multistate processes include

P (Z(t) = k | Z(0) = 0, X)

or

P (Z(t) ∈ A | Z(0) = 0, X)

On their own, marginal features for complex processes are inadequate for assessing

treatment effects.
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Palliative Trials in Metastatic Cancer Hortobagyi et al. (1996)

Aim is to evaluate the effect of bisphosphonates in reducing risk of fractures

2

FRACTURE−FREE

DEATH

0

FRACTURE−FREE

AND ALIVE

1

FRACTURE

2'

DEATH

POST−FRACTURE

Tk is entry time to state k

Nk(s) = I(Tk ≤ s), ∆Nk(s) = Nk(s + ∆s−)−Nk(s
−)

I. Multistate Processes in Clinical Trials 8



Competing Risks

Cause-specific Cox regression

λ1(s | X) = lim
∆s↓0

P (∆N1(s) = 1 | Z(s−) = 0, X)

∆s
= λ10(s) eγ1X

U

X

Z(s−) ∆N1(s)
U 6⊥ X | Z(s−) = 0

“Collider bias” from conditioning on Z(s−) = 0
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Marginal Models based on State Occupancy

2

0 1 2'

Cumulative Incidence Function

Let Fk(t) = P (Tk < t | Z(0) = 0) = P (Nk(t) = 1)

General transformation models Fine and Gray (1999); Scheike et al. (2008)

g(F1(t)) = α1(t) + x β1 (1)

This fails to distinguish states Putter et al. (2020)

0 – alive and event-free 2 – event-free death
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Cumulative Incidence Function Regression Fine and Gray (1999)

Let Y †i (t) = I (Ti1 > t)

n∑
i=1

wi(t)Y
†
i (t) (dNi1(t)− exp (βXi) dΓ(t)) = 0

n∑
i=1

∫ ∞
0

wi(t)Y
†
i (t) (dNi1(t)− exp (βXi) dΓ(t))Xi = 0

and

wi(t) = wG
i (t) =

I (Ci > min (Ti, t))

Gi (min (Ti, t) | Xi)
with Ti = min(Ti1, Ti2)

The estimand β? solves Bühler et al. (2023b)

E (U (β,G∗)) =

∫ ∞
0

{
s(1)(t)− s(1)(t, β)

s(0)(t, β)
s(0)(t)

}
dt = 0 ,

s(r)(t, β) = E
(
w?
i (t)Y

†
i (t)Xr

i exp(βXi)
)

s(r)(t) = E
(
w?
i (t)Y

†
i (t)Xr

i dNi1(t)
)
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Limiting values under intensity-based processes

Suppose 0− k intensities are

λ0k(t | X) = λk exp (γkX) , k = 1, 2 .

Set exp (γ1) = 0.75

For given γ = (γ1, γ2)′, determine λk so that

• P (T 6 1 | X = 0) = 0.6

• P (T1 < T2 | T 6 1, X = 0) ∈ (0, 1)
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Limiting Value of FG Estimator under Cause-Specific Hazards

exp(γ1)=0.75
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Remarks

Analyses based on many particular marginal features are inadequate

Supplementary analyses are needed for a full understanding Scharfstein (2019)

– based on other marginal features

– using intensity-based or partially conditional models

Aalen-Johansen estimates of state occupancy probabilities are robust to violations

of the Markov assumption Aalen et al (2001)
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Utility-based Framework Cook et al. (2003)

Marginal process feature:

U(τ |X) =
∑
k∈S

∫ τ

0

Uk(u)︸ ︷︷ ︸
state k utility

at time u

· P (Z(u) = k|X)du , Uk(u) = Uk ∈ [0, 1] .

Model-free estimands:

β = U(τ |X = 1)− U(τ |X = 0) or β =
U(τ |X = 1)

U(τ |X = 0)

Restricted Mean Survival Time (RMST) McCaw et al. (2019)

Quality Adjusted Life Years Gelber et al. (1989)
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A Therapeutic Breast Cancer Trial Glasziou et al. (1990)

A randomized trial designed to describe the quality adjusted survival over 84 months

among breast cancer patients undergoing short or long duration chemotherapy

Total times spent in each transient state below are of interest

• 413 randomized to short duration chemotherapy (X = 0)

• 816 randomized to long duration chemotherapy (X = 1)

TOXICITY
TOXICITY−FREE

SYMPTOM−FREE
RELAPSED DEATH

STATE 1 STATE 2 STATE 3 STATE 4
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Mean cumulative quality of life Cook and Lawless (2018)
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With utilities u1 = 0.1, u2 = 0.5, u3 = 0.1 and u4 = 0,

Û(84 | X = 0) = 25.61 (S.E. = 0.73) and Û(84 | X = 1) = 28.87 (S.E. = 0.47)
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II. Models Incorporating Intercurrent Events Bühler et al. (2023a)

Intercurrent events are defined as

“events occurring after treatment initiation that affect either the interpretation or the existence

of the measurements associated with the clinical question of interest” ICH E9(R1)

Type 1 Intercurrent Event: precludes observation or occurrence of event

of interest

• Loss to follow-up • Death

Type 2 Intercurrent Event: changes the interpretation of event of interest

• Rescue treatment • crossover or treatment discontinuation
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Guiding Principles for Defining Estimands Bühler et al. (2023a)

1. An estimand should target a marginal process feature with clear scientific

relevance.

2. Features and estimands should be interpretable in the “real world” rather than

in any hypothetical world.

• Target of inference should be an element of the observable process!

3. Estimands should not be sensitive to uncheckable assumptions, and consistent

with observed data and scientific background.

• Models on which an estimand is based should be assessed using available

data.
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EVENT

A. Illness-Death Process

{Z(s), 0 < s}

H(t) = {Z(s), 0 < s < t,X}

λkl(t | H(t))

qkl(t | X) = lim
∆t↓0

P (Z(t+ ∆t−) = l | Z(t−) = k,X)

∆t

B. Illness-Death-IE Joint Process

{Z◦(s), 0 < s}

H◦(t) = {Z◦(s), 0 < s < t,X}

λ◦kl(t | H◦(t))

q◦kl(t | X) = lim
∆t↓0

P (Z◦(t+ ∆t−) = l | Z◦(t−) = k,X)

∆t
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A Type I Intercurrent Event: Censoring Cook and Lawless (2019)

Yc(t) = I(t ≤ C)

Yk(t) = I(Z(t−) = k)

Y (t)Yc(t)

P (C > min(T, t) | H◦(t))
{dN1(t)− dΓ(t | X)}

IPCW renders C ⊥ H(·) | X
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A Type II Intercurrent Event: Rescue treatment

YE(t) = I(t ≤ E) where E is time of introduction of rescue treatment.

YE(t)Yk(t)

P (E ≥ min(T, t) | H◦(t))
{dN1(t)− dΓ(t | X)}

IPW renders E ⊥ H◦(·) | X

This hypothetical scenario has little bearing on clinical care.
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Remarks

• Inverse probability of censoring weighting deals with unrepresentativeness due

to selective attrition

• When censoring at intercurrent events IPCW creates a pseudo-sample not rep-

resentative of any real-world setting

• Intention-to-treat analyses preferred approach incorporating IE into response

process. Scharfstein (2019)
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A Data Generating Process

0

NO CI

2

CI−FREE

DEATH

1

CI

2'

DEATH

POST−CI

• {Z(t), 0 < t} is the stochastic process

• X = 1 for treated and 0 for control

• U are prognostic variables

• H(t) = {Z(s), 0 < s < t, X, U}
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| |

0 A t

X, U, Z(0) = 0 Z(A)

S = I(survival to follow-up time A)

Y indicates cognitive impairment

Aim to evaluate intervention effect on cognitive impairment at A

U

X

S Y

X ⊥ U due to randomization

X 6⊥ U | S = 1
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Remarks

• Rubin (2006) gives rationale for SACE as a causal estimand

• Principal strata are latent so identifiability and estimation of the SACE requires
additional modeling assumptions Egleston et al. (2007)

Questions

Is the interpretation of the SACE aligned with scientific aims?

If we cannot translate our causal question into a target trial, the question
is not well-defined Hernán (ISCB, 2020)

Should we re-evaluate the specification of study objectives in presence of
mortality?
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Remarks on Counterfactuals

“Many counterfactual analyses are based, explicitly or implicitly, on an attitude that I

term fatalism. This considers the various potential responses Yi(u), when treatment i

is applied to unit u, as predetermined attributes of unit u, waiting only to be uncovered

by suitable experimentation.” Dawid (JASA, 2000a)

In their discussion of his paper, Robins and Greenland (2000) and Rubin (2006)
reaffirm the need for counterfactuals, however in Dawid’s rejoinder . . .,

“... my own attitude is that, as there is no difficulty in determining an empirically

meaningful probability structure for the observable (Y , Z) given treatment – even though

this is defined over an unusual space, where Z automatically takes the value “undefined”

whenever Y = 0 ... The real problem is how to define a sensible utility measure on this

outcome space.” Dawid (2000b)
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Carotid endarterectomy vs. medical care in stroke prevention

Barnett et al. (1998) report on a multicenter clinical trial designed to evaluate the
effect of carotid endarterectomy vs. medical therapy.

Endpoints include

• any ipsilateral stroke

• any stroke

• stroke or stroke-related death

• any stroke or death

RANDOMIZATION
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Dynamic Path Analyses

Aalen et al. (2012a, 2012b) point out the importance and appeal of a stochastic
intensity-based point of view in the study of casual mechanisms

Regulatory Decision Making Among Regulators

Randomized clinical trials are typically designed to estimate and test treatment
effects defined on marginal quantities

Some desirable features of analyses include

• interpretable estimands • reproducibility
• robustness to misspecification • facilitates decision making
• validity
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Guiding Principles for Defining Estimands

Process feature is any functional of the set of intensities Andersen and Keiding (2012)

Estimand β = one-dimensional measure in the difference of a process feature be-
tween the treatment groups X = 1 and X = 0.

• Conditional (or dynamic) features have a dynamic causal interpreta-
tion Aalen (2012)

– conditioning onH(t) induces time-dependent confounding, i.e.,X 6⊥⊥ V | H(t)
Hernán (2010); Aalen et al. (2015)

– crucial to a full understanding of the disease process

– however: not suited for “simple” causal inference based on randomization

• Marginal features do not condition on H(t) and have a descriptive causal
interpretation!
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Nelson-Aalen Estimates of Cumulative Intensities
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Remarks

Multistate models provide a powerful framework for

1. characterizing disease processes and the introduction of interventions, loss to
followup or other complications arising in the conduct of randomized clinical
trials.

2. the analysis and interpretation of marginal process features used to define causal
effects.

3. extensive secondary analysis of treatment effects and evaluation of overall re-
sponse to treatment.
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Asymptotic % Relative Difference: 100(β? − γ1)/γ1
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β? vs. eγ2 for different values of eγ1 and P (T1 < T2|T ≤ τ,X = 0)
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Loss to Follow-up Cook and Lawless (2019)

Independence Assumption 1: For (k, l) ∈ {(0, 1), (0, 2), (1, 2)}

lim
∆t↓0

P (Z◦(t + ∆t−) = l | Z◦(t−) = k,H◦(t))
∆t

= λkl(t | H(t)) (X)

Independence Assumption 2: For (k, l) ∈ {(0, 1), (0, 2), (1, 2)}

λ◦k′l′(t | H◦(t)) = λkl(t | H(t)) (Y)

If (X) is violated we can model 0→ 0′ and 1→ 1′ to construct IPCW.

Note (Y) is not checkable without auxiliary data.
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Crossover
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Remarks on potential outcomes

• Potential outcomes have played a central role in the development of causal inference theory and

methods.

• The potential outcome framework can lead to specification of target estimands of dubious sci-

entific relevance.

• Consider assessing the effect of a new intervention versus standard care on an outcome that can

only be measured in individuals who are alive.

• “principal strata” are not identifiable (observable) from the available data Lipkovich et al.

(2022).

• The survivor average causal effect does not convey the effect of treatment on all of those ran-

domized, subset of the population may be small; see also Hernán and Scharfstein (2018)

Preferable strategies for dealing with intercurrent events include

• ignoring their occurrence in an intention-to-treat analysis targetting the effect of a “treatment

policy” (i.e. the effect of prescribing one treatment versus the other at the time of study entry).

• incorporating into a composite endpoint.
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