Penalized Decomposition Using Residuals (PeDecURe) for Mitigating
Nuisance Variables in Multivariate Pattern Analysis
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Introduction

In neuroimaging studies, multivariate methods provide a framework for studying associations between complex spatial
patterns in the brain and neurological, psychiatric, and behavioral phenotypes. However, mitigating the influence of nuisance
variables, such as confounders, remains a critical challenge. For example, in studies of Alzheimer’s Disease (AD), imbalance
In disease rates across age and sex may make it difficult to distinguish between structural patterns in the brain attributable
to disease progression and those characteristic of typical human aging or sex differences (Hua et al. 2010).

When not properly accounted for, nuisance variables can obscure interpretations and preclude the generalizability of find-
iIngs from neuroimaging studies (Linn et al. 2016; Rao et al. 2017). Motivated by this critical issue, in this work we examine
the impact of nuisance variables on features extracted from image decomposition methods and propose Penalized Decom-
position Using Residuals (PeDecURe), a new method for obtaining nuisance variable-adjusted features in neuroimaging
and other complex datasets.

Methods

Let Xnhx p be a matrix matrix of p image-derived features, such as volumes of different regions of interest (ROls) in the brain,
for n study subjects. Let Anxq be a matrix of nuisance variables, which are considered important to account for before
we can study the relationship between X and Y (Figure 1(a)), an outcome of interest (say, AD diagnosis). The objective
functions of existing decomposition methods (PCA, partial least squares (PLS), and PCA with adjustment for confounders
(AC-PCA, (Lin et al. 2016)), are illustrated and provided in Figure 1(b).

Penalized Decomposition Using Residuals (PeDecURe). To implement our proposed method, we first fit the following
linear model at each image location (j =1, ..., p):
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Next, we define two sets of residuals: |
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where Bﬁ@ and 5§f> are the coefficient estimates for A and Y (conditional on Y and A respectively) in Equation (1) for
image locations v = 1,...,p. As shown in Figure 1(c), PeDecURe identifies primary components (PCs) which maximize
covariance between X* and Y, while simultaneously penalizing associations between X and A.

Simulation set-up. Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), we take 1000 training samples
of n = 200 using a biased sampling procedure to induce confounding by age (A{) and sex (A») in each training sample. We
apply each decomposition method to estimate PCs in each training sample and then compare performance of the methods
in both the training samples and in 1000 random testing samples of n = 80 (which are balanced with respect to A; and Ar)
using partial correlation coefficients between PC 1-3 scores and Y, Ay, and Ao-.

Figure 1.
(a) Observed data. (b) Objective functions for previous decomposition methods.
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(c) Proposed method: Penalized Decomposition Using Residuals (PeDecURe).
Forj=1,...,p" (p* <p), find V; that maximizes:
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Scores on PeDecURe’s PC1 had high partial correlation with Y, and scores on the top 3 PCs were not correlated with A; or Ao,
conditional on Y (Figure 2). PCA, PLS, and AC-PCA all had higher distributions of partial correlations with A; or A;. PeDecURe’s
performance was similar (although slightly more variable) in held-out testing data that came from a different sampling distribution

than the training samples.

Figure 2.
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Conclusions
PeDecURe can be used to reduce the influence of nuisance variables, including confounders, in neuroimag- Figure 3.

iIng data, without losing valuable information about an outcome of interest. PeDecURe’s PC1 is also highly
predictive of the outcome of interest (see additional results in our preprint, which is linked below). In addi-

tion, PeDecURe’s robustness to the distribution of confounders supports the method’s generalizability. While
PeDecURe is primarily motivated by MVPA in the context of neuroimaging, it is broadly applicable to datasets
where the dimensionality or complexity of the covariance structure calls for novel methods to handle sources
of nuisance variation. In future work, we will further investigate the interpretability of features derived using

PeDecURe (Figure 3).

Acknowledgements

This work is supported by the following grants: RO1MH112847, RO1MH123550,
RO1NS112274, RO1INS060910, U01AG068057, RO1TMH112070, and RF1AG054409. This
work is also supported by the National Science Foundation Graduate Research Fellowship
Program.

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how_to_apply/ADNI Acknowledgement List.pdf

References

Hua, Xue et al. (2010). “Sex and age differences in atrophic rates: an ADNI study with n=
1368 MRI scans”. In: Neurobiology of aging 31.8, pp. 1463—-1480.

Lin, Zhixiang et al. (2016). “Simultaneous dimension reduction and adjustment for con-
founding variation”. In: Proceedings of the National Academy of Sciences 113.51,
pp. 14662—-14667.

Linn, Kristin A et al. (2016). “Addressing confounding in predictive models with an applica-
tion to neuroimaging”. In: The international journal of biostatistics 12.1, pp. 31-44.
Rao, Anil et al. (2017). “Predictive modelling using neuroimaging data in the presence of

confounds”. In: Neurolmage 150, pp. 23—49.

10.1101/ 2022 .01.27.4

bioRyiv

THE PREPRINT SERVER FOR BIOLOGY

CONTACT

Sarah Weinstein, Biostatistics PhD Candidate
sarah.weinstein@pennmedicine.upenn.edu
http://smweinst.github.io



	References

