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Introduction

Linear mixed-effects (LME) models are widely
used in analyzing repeated measurement and lon-
gitudinal data. Although statistical inference of
the fixed effects is well studied, inference of the
variance component is rarely explored, which of-
ten requires strong distributional assumptions on
the random effects and errors.
Question: How to do distribution-free inference
of the variance component in LME models?

Problem setup

•n subjects.
For the ith subject, ni repeated measurements.
For each repeated measure, data are collected at
time t = s1, s2, · · · , sm.

•For the ith subject at time t, we observe
a response vector yi(t) ∈ Rni,
an ni × p design matrix Xi for the fixed effects
β(t) ∈ Rp,
d ni × ni semi-positive design matrices Φiq

(q = 1, · · · , d) for the variance components
θ∗(t) ∈ (R+ ∪ {0})d.

LME model

A general setting of the linear mixed-effects
model:

yi(t) = Xiβ(t) + ri(t), i = 1, · · · , n,
where ri(t) ∈ Rni is a zero-mean random variable
with variance Hi(θ∗(t)).
We considerHi(θ∗(t)) with a linear structure, i.e.,

Hi(θ∗(t)) =
d∑
q=1

θ∗q(t)Φiq,

θ∗(t) = (θ∗1(t), · · · , θ∗d(t))T
.= (θ∗1(t), θ∗(1)(t)T )T .

• In this general setting, we do not specify any
distribution for the data.

•The data yi(t) are independent over different
subjects i, while they are allowed to be
non-independent over t.

Testing problems

1 Local testing problem H0 : θ∗1(t) = θ0
1(t) at a

given t.
2 Global testing problem H0 : θ∗1(t) ≡ θ0

1,
t ∈ [t1, t2].

Local test

•When β(t) is unknown, suppose β̂(t) is an
unbiased estimator of β(t) based on all the data.

•Let Ri(t) = ri(t)ri(t)T . Since
var(ri(t)) = Hi(θ∗(t)), we have

Ri(t) = Hi(θ∗(t)) + δi(t) =
d∑
q=1

θ∗q(t)Φiq + δi(t),

where E(δi(t)) = 0 and var(δi(t)) exists.
•For i = 1, · · · , n, let
r̂i(t) = yi(t)−Xiβ̂(t) = ri(t) + Xi(β(t)− β̂(t)),
R̂i(t) .= r̂i(t)r̂i(t)T

= Hi(θ∗(t)) + δi(t) + ε̂i(t),
•Let Ξ be a d× d symmetric matrix with the

(k, l)th element Ξkl = ∑n
i=1 tr(ΦikΦil).

For each t, let Υ̂(t) be a d-dimensional vector
with the kth element Υ̂k(t) = ∑n

i=1 tr(ΦikR̂i(t)).
•We define

Ẑi(θ1(t)) = tr
Φi1

R̂i(t)− Φi1θ1(t)−
d∑
q=2

θ̂q(t)Φiq


 ,

where
θ̂(1)(t)

.= (θ̂2(t), · · · , θ̂q(t))T = (Ξ−1)T−1Υ̂(t).
•The empirical likelihood ratio is defined by

S(θ1(t)) = max
pi

{ n∏
i=1

(npi)
∣∣∣pi ≥ 0,

n∑
i=1
pi = 1,

n∑
i=1
piẐi(θ1(t)) = 0

}
.

Global test

•A maximally selected empirical likelihood ratio
statistic:

Γ = sup
t∈[t1,t2]

ĉn(θ0
1)
−2 log S(θ0

1)
S(θ̂1(t))


 .

•Rewrite Ξ as Ξ =
(
E11 E12
E21 E22

)
with E11 being a

scalar.
Let F = E−1

22 E21 = (F1, · · · , Fd−1)T .
•We can show that

Γ = sup
t∈[t1,t2]

ER(t) + op(1),

where

ER(t) =


(n−1/2∑n

i=1 D̂i(t))2

ν̂2
1n(t) I(∑n

i=1 D̂i(t) ≥ 0), if θ0
1 = 0,

(n−1/2∑n
i=1 D̂i(t))2

ν̂2
1n(t) , if θ0

1 > 0.
Here,
D̂i(t) = α−1

〈
Φi1 −

∑d−1
q=1 FqΦiq+1, R̂i(t)− θ0

1Φi1
〉

are asymptotically independent.
•For each permutation g (g = 1, · · · , G), let

ER(g)(t)

=


(n−1/2∑n

i=1 D̂i(t)ξ(g)
i )2

ν̂2
1n(t) I(∑n

i=1 D̂i(t)ξ(g)
i ≥ 0), if θ0

1 = 0,
(n−1/2∑n

i=1 D̂i(t)ξ(g)
i )2

ν̂2
1n(t) , if θ0

1 > 0,

Γ(g) = sup
t∈[t1,t2]

ER(g)(t),

where ξ(g)
i are i.i.d. standard normal distributed.

•The p-value of Γ can be approximated by

p̂ = 1
G

G∑
g=1

I(Γ(g) > Γ).

Theorem

Condition 1. As n→∞, P (0 ∈ ch{Ẑ1(θ0
1(t)), · · · , Ẑn(θ0

1(t))})→ 1, where ch{} is the convex hull.
Condition 2. The expectation E‖ri(t)‖4+γ1

2 are bounded uniformly for some γ1 > 0.
Condition 3. E(ε̂i(t)) = O(n−γ2/2); cov

(
ri(t)ri(t)T , ε̂j(t)

)
, cov

(
ε̂i(t), ε̂j(t)

)
= O(n−γ2), i 6= j, for some

γ2 > 1.

Let θ̂1(t) = arg maxθ1(t)≥0S(θ1(t)). Let ĉn(θ0
1(t)) = ν̂2

2n(θ0
1(t))/ν̂2

1n(θ0
1(t)), where ν̂2

1n(θ0
1(t)) is a consistent

estimator of the asymptotic variance of n−1/2 ∑n
i=1 Ẑi(θ0

1(t)) and ν̂2
2n(θ0

1(t)) = n−1 ∑n
i=1 Ẑ

2
i (θ0

1(t)).
If θ∗(1)(t) ∈ Rd−1

+ , then under Conditions 1–3, as n→∞,

ĉn(θ0
1(t))

−2 log S(θ0
1(t))

S(θ̂1(t))

 d−→ X 2
1

when θ0
1(t) > 0, and

ĉn(0)
−2 log S(0)

S(θ̂1(t))

 d−→ U 2
+,

where U ∼ N(0, 1) and U+ = max(U, 0).

ĉn(θ0
1(t))

−2 log S(θ0
1(t))

S(θ̂1(t))

 d−→ X 2
1

when θ0
1(t) > 0, and

ĉn(0)
−2 log S(0)

S(θ̂1(t))

 d−→ U 2
+,

where U ∼ N(0, 1) and U+ = max(U, 0).

Real application

• 298 healthy twins: 126 monozygotic (MZ) twins
and 172 dizygotic (DZ) twins.

•The subjects wore actigraphy to track their
physical activities for 2 weeks.

•We rescaled and transformed the minute-level
ENMO values (1440-dimensional vector per day)
as follows:
For the j-th measurement (day) from the subject
i, the raw data ξij = (ξij1, · · · , ξij1440)T from the
wearable device were transformed by using

ξ̃ij = log(9250 · ξij + 1).
•Define the t-quantile of activity counts by
yij(t) = ξ̃

[1440·t]
ij , t = 1/144, 2/144, · · · , 144/144,

where ξ̃[s]
ij denotes the s-th order statistic of ξ̃ij.

•xij = (1, Gender, Age, BMI, Weekend)T .
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In the heritability analysis, the linear
variance structure can be constructed
straightforwardly. Whether there is sig-
nificant genetic effects is of most interest.
1 Local test H0 : θ∗1(t) = 0.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

p−
va

lu
e

EL2
LR

Figure 1: The p-values of the proposed local test (EL2) and
the likelihood ratio test (LR). The null hypothesis is rejected
if t ∈ [0.375, 0.958] for EL2 and t ∈ [0.472, 0.931] for LR at
the 0.05 significance level.

2 Global test H0 : θ∗1(t) ≡ 0, t ∈ [0, 1].
The p-value is 0 when applying the proposed
global test (gEL2).
We further examine the interval of heritable
percentile ranges by setting the scanning lengths
8, 9, 10, 11, 12, and apply gEL2 to the candidate
intervals.
The proposed gEL2 identifies the heritable
interval of percentiles between t ∈ [0.354, 0.903].


