Risk Prediction for Partially Heterogeneous Subgroups via Fusion
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Motivation

Accurate risk modeling is challenging due to variation in baseline risk and risk predictors across
patient subgroups. Such heterogeneity in risk, if left unrecognized, can lead to compromised ac-
curacy. The data for subgroups may not be sufficiently rich to allow separate analyses when the
number of predictors is large. To overcome this, we propose a novel algorithm to fit subgroup-
specific models, which leverages the sharing of a common predictor while performing variable se-
lection for subgroup-specific predictors. Building upon an existing fusion technique, the proposed
method encourages similarity among subgroup-specific parameters for the common predictor.

A Partially Heterogeneous Subgroup-Specific Risk Prediction Model

= Y: a binary outcome; X: a p-dimensional EHR predictors
= S a predictor that is highly predictive of Y (e.g., a predictive score from an existing model)
= K: the number of patient subgroups, which is defined a priori

* G ={G1...,Gk}: a partition of the data, with |G| =ni fork=1,...,Kand )  np =N

For each ¢ € Gi, we consider logitP(Y; = 1|5;, X;) = ap+ 5; ,Bk-I-XT’Tk, k=1,...K. Torecognhize
that S may calibrate well in some of the K groups, we propose a fusion technique on {ozk}f=1
and {5k}kK=1 while selecting subgroup-specific predictors through {’Tk}szl, . ERP k=1,... K.
Denote ®) 0, = (1,5, X;) (o, Br, 7)1, and let 6 = {6,k = 1,..., K}. We then fit the model by
minimizing the penalized negative % fozl 01(0) + pr(0), log-likelihood function, where £.(0;) =
Ziegk[¢(d>20k) - YZ-<I>,;-r¢9k] is the kth subgroup-specific likelihood, % (t) = log(1 + exp(t)), and

pA(0) = /\( ZkK=2 |a(k) ~ a(k—1)| + Ca|a[1]| + ZkK=2 |ﬂ(k) — ﬂ(k—l)' i Cﬁ|ﬂ[1]| + ZkK=1 J(Tk))-

" ok), B): the kth smallest component of (e, . ..
" o), By the smallest element of vector (fay], ...

cag)and (By,. .., BK), respectively

lekl) and (|B1], .- -, |Bk|), respectively
" cq € {0,1}, cg € {0, 1}: a pre-determined constant for turning on or off sparsity

An lterative Algorithm

We illustrate an iterative algorithm under J(1) = ||7|l1, K =1, ..., K as follows.

= |nitialization. For k =1, ..., K, obtain initial subgroup-specific estimators

p
(&, Br, i) « arg mln—fk(ak, B k) + A ) _ |75,
g, B,k tk =

“ Step 1. For k=1,..., K, update 7}, < argmin;, ~ Ek(ak,ﬂk,Tk) + )\Z —1 I7#4l-
= Step 2.

= Update

1 K . K
T arg;ninj—v kzz:lek(ak, el )\(g oy — ae-1)| + Ca|a[1]|>-
= Update

/3 = argmm—Zék (Gk, Bk, Tk) + )\(Z |,3(k :B(k—l)l i Cﬂ|ﬁ[1]|)-

= Repeat Step 1-2 until convergence.

The Local Optimality Property of Stationary Points (Bertsekas, 1999)

We derive the upper bound on the squared ¢9-error for the distance between stationary points
(Bertsekas, 1999) and the corresponding population optimum in the theorem below. The the-
orem implies that the above coordinate descent algorithm is guaranteed to converge to sta-
tionary points within close proximity of the true parameter values.

( il *T)T

1 ,..-,Tg ) arefeasible and

Theorem 1. Suppose (A, R) are chosen such that o*, 5%, and T*

C\/log((p”)K) —
N R

where (c, ) are some positive constants. Assume regularity conditions (A1)-(A4) in the Appendix
hold. Then for any N > CR?log((p + 2)K) with a sufficiently large constant C' > 0, with the
probability at least 1 — c1 exp(—c2 log((p + 2)K)), any stationary points, &, B and 7 of the objective
function satisfy the estimation error bound

& — o\ ||

g || < X"

-/, ~ (4y; — 3u)2b’
where k = 1[| o1, 3*T 7N\, ¢o is a positive constant, 1 is a constant depending on
1(@*T, B*T, 7T T|o, 9, Ain(3), and the sub-Gaussian parameters. Here, we assume p < 2+i.

Simulation Studies

= X,; ~ N(0, Q’“) and S; obtained by plugging X; into a preliminary risk model
= Y; ~ Bern(m;) with m; = exp (n;)/[1 + exp (n;)], where n; = a; + S; 8 + X;r'rk
= K =10, p =50, and equal subgroup sizes n; = --- = ng = n varying from 100 to 250

= To introduce heterogeneity into a and 3, we set m = [(1 — r) K| elements of a and  to be
homogeneous where r € {0.3,0.7}. For a given r value, we consider

a)=---=am=—L1.5, B =++= Bm = 1.5,
a;=-02-0.17 form<j<K, B;i=19+0.15 form<j<K.

R, = {Op(k_l)/K, seq(1,0.2,p/K), Op(K_k)/K} if 1 <k < [K/2],and 1, = 0p otherwise

The proposed fused lasso approach (“FL’) is compared to subgroup-specific analysis with lasso

(“SL") and analysis of data aggregated from all subgroups with lasso (“CL")

Table 1. Simulation results on mean AUPRC, median calibration slope, MEDSE of the regression ceofficient for S,
and mean Spearman’s rank correlation p based on 1000 replications.

AUPRC Calibration Slope MEDSE Spearman’s p
T Group Sl CL = SL (61 FL SL El EL: SL Cl: FL
0.3 g1 0.75 0.53 0.76 0.85 1.10 0.83 2:25 0.17 0.46 0.84 042 0.84
G2 (8 7 0.50 0.72 0.85 1.08 0.83 225 017 0.56 0.86 0.30 0.85
G 0.60 0.54 0.65 0.80 1.42 0.77 225 0.17 0.56 0.74 0.50 0.74
G4 0.76 0.57 0.77 0.87 1.61 0.85 225 0.17 0.56 0.89 0.52 0.90
Gs 0.65 0.45 0.68 0.82 0.86 0.81 2.25 0.17 0.56 0.81 0.29 0.83
Ge 0.02 0.40 0.39 -0.03 0.07 0.88 2.25 0.17 0.56 0.01 0.45 0.72
G+ 0.01 0.28 0.29 -0.06 0.02 0.87 225 8 b 0.56 0.00 0.25 0.74
Gs 0.03 0.67 0.69 0.03 0.08 0.89 1.29 1.82 3.80 0.01 0.38 0.74
Gy 0.04 0.62 0.67 0.04 0.12 0.94 7.84 2.10 4.12 0.02 0.42 0.89
Go 0.06 0.60 0.62 -0.02 0.11 0.94 8.41 2.40 4.58 0.02 0.39 0.87
QO:71 G .75 .53 0.75 0.86 1.20 0.83 2.25 1.08 0.59 0.88 0.48 0.82
G2 0.72 0.51 0.73 0.85 1.16 0.84 2:25 1.08 1.27 0.88 0.35 0.86
Gs 0.60 0.55 0.64 0.79 1.48 0.78 223 1.08 1.27 0.83 D59 0.75
G4 0.85 0.74 0.86 0.88 177 0.86 5.29 3.38 0 3 | 0.91 0.63 0.90
Gs 0.80 0.62 0.82 0.84 0.99 0.83 5.76 3.76 3.90 0.87 0.34 0.86
Gs 0.02 0.68 0.70 -0.04 0.08 091 6.25 4.16 3.76 0.24 0.23 0.70
G 0.04 0.50 0.51 -0.08 0.00 0.96 6.76 4.57 4.08 0:13 0.00 0.72
Gs 0.03 0.67 0.69 0.03 0.05 1.07 7.29 5.01 4.53 0.23 0.14 0.75
Gy 0.04 0.60 0.66 0.04 0.09 312 7.84 547 4.93 0.25 0.20 075
Go 0.06 0.59 0.61 0.08 0.06 107 8.41 5.95 5.71 D23 0.13 0.72
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Analysis of Penn Medicine EHR Data

Goal: predict 180-day risk of mortality for oncology patients using the structured data extracted
from the University of Pennsylvania Health System EHRs

= N = 20, 723 patients, ranging from 330 with thyroid cancer to 4,665 with breast cancer
= K =11 cancer types
= p = 198 EHR predictors (e.g., lab results, comorbidities, demographics)

= An existing gradient boosting model (Parikh et al., 2019), which did not distinguish cancer
types, was used to generate risk predictor S

Date split into two subsets of equal sizes that are used as the training and test sets, respectively.

Table 2. Estimated AUPRC and calibration slope for models of short-term mortality risk

AUPRC Calibration Slope

Cancer Type S CL FL SL CL FL

Breast 0.44 0.46 0.44 1.08 1.48 1.08
Gl 0.43 0.44 0.43 14935 0.80 1.14
GU 0.48 0.50 0.48 1:.17 1.26 1.13
Gyn 042 0.43 0.42 0.96 1S (A7
Leukemia 0.33 0.32 0.33 0.83 0.81 0.79
Lymphoma 0.32 0.30 D33 1 g i 1.19 146
Melanoma 0.46 047 0.46 0.80 1.04 O: 7
Myeloma - 0.32 0.30 - 1.29 1.13
Neuro 0.36 0.41 0.37 0.69 0.98 O07S
Thoracic 0.34 0.35 0.34 1.20 0.71 1.19
Thyroid - 0.41 0.39 - 142 1.09
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[ e |

Figure 1. Distribution of log-transformed predicted risk estimates of mortality across cancer types.

Conclusion

The proposed method groups the parameters based on their similarities in the coefficients, which
IS a good alternative approach to the multiple hypothesis testing in the presence of numerous
subgroups. Such fusion is also expected to achieve parsimony of model parameters. Our method
has also shown an improved empirical performance, especially when it comes to calibration.
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