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METHODS SIMULATION RESULTS

« PCASSO: Novel scalar-on-matrix regrESSiOn teChnique USing structured « Nalve approaches using structured lasso
lasso with the first ¢ PCA components of X; € R7%Pi as predictors, q < p;
 Allows for unbalanced X;
* Preserves hierarchical structure
« Estimable feature-level effects S

INTRODUCTION

 Kidney disease diagnoses have conventionally been based on visual
assessment of structural changes in the kidney biopsy tissue

 Digital pathology and computational image analysis methods provide an
opportunity to extract additional information from biopsy images

« Max p; balancing: Resample®! rows of X; until number of
rows = max{p;:1 <i < n}

* Min p; balancing: Keep first min{p;: 1 < i < n} rows of X;

. Pat_homic features: Computer-ge_nera_ted guantitative measurements » Enforces sparsity on row/column-level effects . Na'l'_ve aggregated approach using standard lasso: For each
derived from segmented histologic objects + Built-in dimensionality reduction subject, average feature j = 1, ..., g across tubules
« Quantify heterogeneity of histologic objects  Collinearity | in segmented object dimension « Model fitting
* E.g., tubule-specific characteristics of shape, texture, » Structured Lasso: Performs scalar-on-matrix regression for balanced  80/20 training/testing split
orientation? matrices by solving the optimization problem?? * A, (lasso shrinkage parameter) chosen per method with 5-fold
« Pathomic feature-based prediction? of clinical outcomes may be 1 - 2 cross validation on training data
more reliable than... argmin e Y (v~ @' XiB)” + Allall1 181,
 Using clinical data alone i=1 _ Max p; Min p;
. Standard pathology descriptors only (i.c., from pathologist’s » Principal Components Analysis (PCA): Finds linear transformation that PCASSO | Balancing | Balancing | \99redated

maximizes variability in a dataset, and uses this transformation to get

manual visual assessments) ated variablest % B correctly
. . : uncorrelated variables N
« Previous use of pathomic features: aggregated to the patient level: o _ Identified as 80% 3% o% 4%
loss of potentially useful information! * Decomposes matrix Z; into orthogonal scores T; and loadings L;: nonzero
' Z; =T, LTl_" % f entries with
- - : : : : correct positive 41% 2% 2% 0%
* Regression on first a; columns of T;: Large dimensionality reduction sign
(for a; < minimum number of rows and columns) % B entries with
» Regression on principal components (PCs)%58-10 reduces collinearity of SR ML 42% 1% 1% 1%
predictors — advantageous for lasso? )
« X7 assumed to berank r < g, as q < p; Table 1. Performance metrics comparing PCASSO to naive scalar-on-

matrix regression and aggregation methods under consideration from

« Maximum number of independent PCs of X/ is g, and each PC is a g- . .
simulation study.

dimensional vector

» Stack first g PCs of X;" row-wise to form X/ CONCLUSIONS

Figure 1. Segmentation of proximal (yellow) and distal (green) tubules. « Each X; has dimension g X g to enforce balanced design: dimensionality _ _ -
Adapted from Development and evaluation of deep learning-based reduction that encapsulates the underlying structure of X * PCASSO most consistently identifies true nonzero feature effects —
segmentation of histologic structures in the kidney cortex with multiple better identification of which pathomic features are most informative of

histologic stains’. SIMULATION SETUP clinical outcome

« PCASSO more consistently identifies correct sign of nonzero feature

* Number of subjects: n = 200 effects — better identification of the directions of associations of
DATA STRUCTURE * Number of features: g = 50 pathomic features and clinical outcome

" - P;: Population of objects which exist for subject i, from which p; are observed » Simulation results are preliminary; further simulations and real data
 Scalar outcome y; for each subjecti =1, ...,n : :
_ _ e P=pP, =...=P =500 analysis are needed to confirm performance of PCASSO
« . 1 n
« Matrix-valued predictors X; € RPi*4 with g < p;, p; large _ _ _ _ .
« Assumption: No segmentation errors (p; objects correctly identified)
« X, € RPX4: Matrix-valued predictors with fl:” Information (features on all REFERENCES
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