

INTRODUCTION

- Kidney disease diagnoses have conventionally been based on visual assessment of structural changes in the kidney biopsy tissue
- Digital pathology and computational image analysis methods provide an opportunity to extract additional information from biopsy images
- Pathomic features: Computer-generated quantitative measurements derived from segmented histologic objects
 - Quantify heterogeneity of histologic objects
 - E.g., tubule-specific characteristics of shape, texture, orientation³
- Pathomic feature-based prediction⁴ of clinical outcomes may be more reliable than...
 - Using clinical data alone
 - Standard pathology descriptors only (i.e., from pathologist's manual visual assessments)
- Previous use of pathomic features: aggregated to the patient level: loss of potentially useful information!

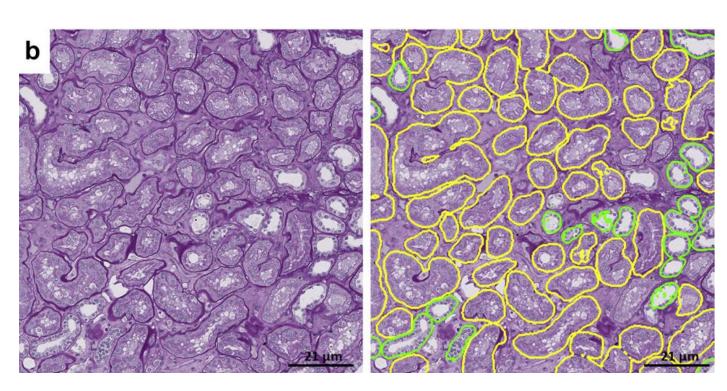


Figure 1. Segmentation of proximal (yellow) and distal (green) tubules. Adapted from *Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains*⁷.

DATA STRUCTURE

- Scalar outcome y_i for each subject i = 1, ..., n
- Matrix-valued predictors $X_i \in \mathbb{R}^{p_i \times q}$, with $q < p_i, p_i$ large

X_1	Feature 1	Feature 2	•••	Feature q
Tubule 1	x_{11}	x_{12}	•••	x_{1q}
Tubule 2	x_{21}	x_{22}	• • •	x_{2q}
•••	•••	• • •	• • •	
Tubule p_1	x_{p_11}	x_{p_12}	•••	x_{p_1q}

Histologic object on one dimension and features on the other

$X_{\rm n}$	Feature 1	Feature 2	• • •	Feature q
Tubule 1	x_{11}	x_{12}	• • •	x_{1q}
Tubule 2	x_{21}	x_{22}	• • •	x_{2q}
•••	•••	•••	•••	•••
Tubule p_n	x_{p_n1}	x_{p_n2}	•••	x_{p_nq}

Figure 2. Structure of matrix-valued predictors of features per histologic object (e.g., tubule)

PCA Structured lasSO (PCASSO)

Jeremy Rubin¹, Jarcy Zee^{1,2}

¹Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania; ²Children's Hospital of Philadelphia

METHODS

- PCASSO: Novel scalar-on-matrix regression technique using structured lasso with the first q PCA components of $X_i^T \in \mathbb{R}^{q \times p_i}$ as predictors, $q < p_i$
 - Allows for unbalanced X_i
 - Preserves hierarchical structure
 - Estimable feature-level effects β
 - Enforces sparsity on row/column-level effects
 - Built-in dimensionality reduction
 - Collinearity ↓ in segmented object dimension
- Structured Lasso: Performs scalar-on-matrix regression for balanced matrices by solving the optimization problem¹²

$$\operatorname{argmin}_{(\alpha,\beta)\in\epsilon} \frac{1}{n} \sum_{i=1}^{n} (y_i - \alpha^T X_i \beta)^2 + \lambda_n \|\alpha\|_1 \|\beta\|_1$$

- **Principal Components Analysis (PCA)**: Finds linear transformation that maximizes variability in a dataset, and uses this transformation to get uncorrelated variables⁴
 - Decomposes matrix Z_i into orthogonal scores T_i and loadings L_i : $Z_i = T_i L_i^T$
 - Regression on first a_i columns of T_i : Large dimensionality reduction (for $a_i \ll$ minimum number of rows and columns)
 - Regression on principal components $(PCs)^{1,5,8-10}$ reduces collinearity of predictors \rightarrow advantageous for lasso²
- X_i^T assumed to be rank $r \le q$, as $q < p_i$
- Maximum number of independent PCs of X_i^T is q, and each PC is a q-dimensional vector
- Stack first q PCs of X_i^T row-wise to form X_i^*
- Each X_i^* has dimension $q \times q$ to enforce **balanced design**: dimensionality reduction that encapsulates the underlying structure of X_i^T

SIMULATION SETUP

- Number of subjects: n = 200
- Number of features: q = 50
- P_i : Population of objects which exist for subject i, from which p_i are observed
 - $P = P_1 = \cdots = P_n = 500$
 - Assumption: No segmentation errors (p_i objects correctly identified)
- $\widetilde{X}_i \in \mathbb{R}^{P \times q}$: Matrix-valued predictors with full information (features on all objects, not observed in real data) and i.i.d. N(0,1) entries
- Row coefficients $\alpha^* \in \mathbb{R}^{P \times 1}$ and column coefficients $\beta^* \in \mathbb{R}^{q \times 1}$, each with i.i.d. N(0,1) entries
- Sparsity
 - Let $s_{\alpha} = 90$ denote the sparsity coefficient index for α^* and $s_{\beta} = 96$ denote the sparsity coefficient index for β^*
 - Randomly sampled s_{α} and s_{β} percent of indices of α^* and β^* , respectively, and set α^* and β^* to be zero at these locations
- Outcome: $y_i = (\alpha^*)^T \widetilde{X}_i \beta^* + \epsilon_i, \epsilon_i \sim N(0,1)$
- $M = \{p_i: 1 \le i \le n\}, \sigma_M^2 = Var(M), \mu = E(M)$
 - $\mu = 250$
 - $\sigma_M^2 = 500$
- Sampled each p_i from a discrete uniform distribution U(a, b) with midpoint μ and (a, b) such that H = b a + 1 is the largest odd integer less than or equal to $\sqrt{12\sigma_M^2 + 1}$
- $X_i \in \mathbb{R}^{p_i \times q}$: Matrix-valued predictors of observed objects derived by randomly sampling p_i rows of \widetilde{X}_i

SIMULATION RESULTS

- Naïve approaches using structured lasso
 - Max p_i balancing: Resample^{6,11} rows of X_i until number of rows = max $\{p_i: 1 \le i \le n\}$
 - Min p_i balancing: Keep first min $\{p_i: 1 \le i \le n\}$ rows of X_i
- Naïve aggregated approach using standard lasso: For each subject, average feature j = 1, ..., q across tubules
- Model fitting
 - 80/20 training/testing split
 - λ_n (lasso shrinkage parameter) chosen per method with 5-fold cross validation on training data

	PCASSO	Max p_i Balancing	Min p_i Balancing	Aggregated
% β correctly identified as nonzero	80%	3%	5%	4%
% β entries with correct positive sign	41%	2%	2%	0%
% β entries with correct negative sign	42%	1%	1%	1%

Table 1. Performance metrics comparing PCASSO to naïve scalar-on-matrix regression and aggregation methods under consideration from simulation study.

CONCLUSIONS

- PCASSO most consistently identifies true nonzero feature effects → better identification of which pathomic features are most informative of clinical outcome
- PCASSO more consistently identifies correct sign of nonzero feature effects → better identification of the directions of associations of pathomic features and clinical outcome
- Simulation results are preliminary; further simulations and real data analysis are needed to confirm performance of PCASSO

REFERENCES

- 1. Bair, E., Hastie, T., Paul, D., & Tibshirani, R. (2006). Prediction by Supervised Principal Components. Journal of the American Statistical Society, 101, 119–137. https://doi.org/10.1198/016214505000000628
- 2. Bühlmann, P., Rütimann, P., Geer, S. van de, & Zhang, C.-H. (2013). Correlated variables in regression: Clustering and sparse estimation. Journal of Statistical Planning and Inference, 143(11), 1835–1858. https://doi.org/10.1016/j.jspi.2013.05.019
- 3. Eloyan, A., Yue, M. S., & Khachatryan, D. (2020). Tumor Heterogeneity Estimation for Radiomics in Cancer. Statistics in Medicine, 39(30), 4704–4723. https://doi.org/10.1002/sim.8749
- 4. Ginsburg, S. B., Viswanath, S. E., Bloch, B. N., Rofsky, N. M., Genega, E. M., Lenkinski, R. E., & Madabhushi, A. (2015). Novel PCA-VIP Scheme for Ranking MRI Protocols and Identifying Computer-Extracted MRI Measurements Associated with Central Gland and Peripheral Zone Prostate Tumors. *Journal of Magnetic Resonance Imaging*, 41(5), 1383–1393. https://doi.org/10.1002/jmri.24676
- 5. Hill, R. C., Fomby, T. B., & Johnson, S. R. (1977). Component selection norms for principal components regression. Communications in Statistics Theory and Methods , 6(4), 309–334. https://doi.org/10.1080/03610927708827494
- 6. Hu, M., Crainiceanu, C., Schindler, M. K., Dewey, B., Reich, D. S., Shinohara, R. T., & Eloyan, A. (2020) Matrix decomposition for modeling lesion development processes in multiple sclerosis. Biostatistics. https://doi.org/10.1093/biostatistics/kxaa016
- 7. Jayapandian, C. P., Chen, Y., Janowczyk, A. R., Palmer, M. B., Cassol, C. A., Sekulic, M., Hodgin, J. B., Zee, J., Hewitt, S. M., O'Toole, J., Toro, P., Sedor, J. R., Barisoni, L., & Madabhushi, A. (2021). Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. *Kidney International*, 99(1), 86–101. https://doi.org/10.1016/j.kint.2020.07.044
- Jolliffe, I. (1982). A Note on the Use of Principal Components in Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(3), 300–303. https://www.jstor.org/stable/2348005
- 9. Mansfield, E. R., Webster, J. T., & Gunst, R. F. (1977). An Analytic Variable Selection Technique for Principal Component Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 26(1), 34–40. https://www.jstor.org/stable/2346865
- 10. Mevik, B.-H., & Wehrens, R. (2007). The pls Package: Principal Component and Partial Least Squares in R. *Journal of Statistical Software*, 18(2), 1–24. https://doi.org/10.18637/jss.v018.i02
- 11. Ren, S., Lai, H., Tong, W., Aminzadeh, M., Hou, X., & Lai, S. (2010). Nonparametric bootstrapping for hierarchical data. Journal of Applied Statistics, 37(9), 1487–1498. https://doi.org/10.1080/02664760903046102
- 12. Zhao, J., & Leng, C. (2014). Structured Lasso for Regression with Matrix Covariates. Statistica Sinica, 24(2), 799–814. https://doi.org/10.5705/SS.2012.033