
PCA Structured lasSO (PCASSO)
Jeremy Rubin1, Jarcy Zee1,2

1Department of Biostatistics, Epidemiology, and Informatics,

University of Pennsylvania; 2Children’s Hospital of Philadelphia

• Kidney disease diagnoses have conventionally been based on visual 

assessment of structural changes in the kidney biopsy tissue

• Digital pathology and computational image analysis methods provide an 

opportunity to extract additional information from biopsy images

• Pathomic features: Computer-generated quantitative measurements 

derived from segmented histologic objects

• Quantify heterogeneity of histologic objects

• E.g., tubule-specific characteristics of shape, texture, 

orientation3

• Pathomic feature-based prediction4 of clinical outcomes may be 

more reliable than…

• Using clinical data alone

• Standard pathology descriptors only (i.e., from pathologist’s 

manual visual assessments)

• Previous use of pathomic features: aggregated to the patient level: 

loss of potentially useful information!

Figure 1. Segmentation of proximal (yellow) and distal (green) tubules. 

Adapted from Development and evaluation of deep learning-based 

segmentation of histologic structures in the kidney cortex with multiple 

histologic stains7.
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• Naïve approaches using structured lasso

• Max 𝒑𝒊 balancing: Resample6,11 rows of 𝑋𝑖 until number of 

rows = max{𝑝𝑖: 1 ≤ 𝑖 ≤ 𝑛}

• Min 𝒑𝒊 balancing: Keep first min{𝑝𝑖: 1 ≤ 𝑖 ≤ 𝑛} rows of 𝑋𝑖
• Naïve aggregated approach using standard lasso: For each 

subject, average feature 𝑗 = 1,… , 𝑞 across tubules

• Model fitting

• 80/20 training/testing split

• 𝜆𝑛 (lasso shrinkage parameter) chosen per method with 5-fold 

cross validation on training data 

SIMULATION RESULTS

𝑿𝟏 Feature 1 Feature 2 … Feature 𝒒

Tubule 1 𝑥11 𝑥12 … 𝑥1𝑞

Tubule 2 𝑥21 𝑥22 … 𝑥2𝑞

… … … … …

Tubule 𝒑𝟏 𝑥𝑝11 𝑥𝑝12 … 𝑥𝑝1𝑞

Figure 2. Structure of matrix-valued predictors of features per 

histologic object (e.g., tubule)

Histologic object on one dimension and 

features on the other

.
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𝑿𝐧 Feature 1 Feature 2 … Feature 𝒒

Tubule 1 𝑥11 𝑥12 … 𝑥1𝑞

Tubule 2 𝑥21 𝑥22 … 𝑥2𝑞

… … … … …

Tubule 𝒑𝒏 𝑥𝑝𝑛1 𝑥𝑝𝑛2 … 𝑥𝑝𝑛𝑞

• PCASSO: Novel scalar-on-matrix regression technique using structured 

lasso with the first 𝒒 PCA components of 𝑿𝒊
𝑻 ∈ ℝ𝒒×𝒑𝒊 as predictors, 𝒒 < 𝒑𝒊

• Allows for unbalanced 𝑋𝑖
• Preserves hierarchical structure

• Estimable feature-level effects 𝛽
• Enforces sparsity on row/column-level effects

• Built-in dimensionality reduction

• Collinearity ↓ in segmented object dimension

• Structured Lasso: Performs scalar-on-matrix regression for balanced 

matrices by solving the optimization problem12
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• Principal Components Analysis (PCA): Finds linear transformation that 

maximizes variability in a dataset, and uses this transformation to get 

uncorrelated variables4

• Decomposes matrix 𝑍𝑖 into orthogonal scores 𝑇𝑖 and loadings 𝐿𝑖: 
𝑍𝑖 = 𝑇𝑖𝐿𝑖

𝑇

• Regression on first 𝑎𝑖 columns of 𝑇𝑖: Large dimensionality reduction 

(for 𝑎𝑖 ≪ minimum number of rows and columns)

• Regression on principal components (PCs)1,5,8-10 reduces collinearity of 

predictors → advantageous for lasso2

• 𝑋𝑖
𝑇 assumed to be rank 𝑟 ≤ 𝑞, as 𝑞 < 𝑝𝑖

• Maximum number of independent PCs of 𝑋𝑖
𝑇 is 𝑞, and each PC is a 𝑞-

dimensional vector

• Stack first 𝑞 PCs of 𝑋𝑖
𝑇 row-wise to form 𝑋𝑖

∗

• Each 𝑋𝑖
∗ has dimension 𝑞 × 𝑞 to enforce balanced design: dimensionality 

reduction that encapsulates the underlying structure of 𝑋𝑖
𝑇

• Number of subjects: 𝑛 = 200

• Number of features: 𝑞 = 50

• 𝑃𝑖: Population of objects which exist for subject 𝑖, from which 𝑝𝑖 are observed

• 𝑃 = 𝑃1 = ⋯ = 𝑃𝑛 = 500

• Assumption: No segmentation errors (𝑝𝑖 objects correctly identified)

• ෩𝑋𝑖 ∈ ℝ𝑃×𝑞: Matrix-valued predictors with full information (features on all 

objects, not observed in real data) and i.i.d. 𝑁 0,1 entries

• Row coefficients 𝛼∗ ∈ ℝ𝑃×1 and column coefficients 𝛽∗ ∈ ℝ𝑞×1 , each with 

i.i.d. 𝑁 0,1 entries

• Sparsity

• Let 𝑠𝛼 = 90 denote the sparsity coefficient index for 𝛼∗ and 𝑠𝛽 =

96 denote the sparsity coefficient index for 𝛽∗

• Randomly sampled 𝑠𝛼 and 𝑠𝛽 percent of indices of 𝛼∗ and 𝛽∗,

respectively, and set 𝛼∗ and 𝛽∗ to be zero at these locations

• Outcome: 𝑦𝑖 = 𝛼∗ 𝑇 ෩𝑋𝑖𝛽
∗ + 𝜖𝑖, 𝜖𝑖 ∼ 𝑁(0,1)

• 𝑀 = 𝑝𝑖: 1 ≤ 𝑖 ≤ 𝑛 , 𝜎𝑀
2 = 𝑉𝑎𝑟 𝑀 , 𝜇 = 𝐸(𝑀)

• 𝜇 = 250

• 𝜎𝑀
2 = 500

• Sampled each 𝑝𝑖 from a discrete uniform distribution 𝑈(𝑎, 𝑏)with midpoint 𝜇
and (𝑎, 𝑏) such that 𝐻 = 𝑏 − 𝑎 + 1 is the largest odd integer less than or 

equal to 12𝜎𝑀
2 + 1

• 𝑋𝑖 ∈ ℝ𝑝𝑖×𝑞: Matrix-valued predictors of observed objects derived by 

randomly sampling 𝑝𝑖 rows of ෩𝑋𝑖

PCASSO
Max 𝒑𝒊

Balancing

Min 𝒑𝒊
Balancing

Aggregated

%𝜷 correctly 

identified as 

nonzero 
80% 3% 5% 4%

% 𝜷 entries with 

correct positive 

sign
41% 2% 2% 0%

% 𝜷 entries with 

correct negative 

sign
42% 1% 1% 1%

Table 1. Performance metrics comparing PCASSO to naïve scalar-on-

matrix regression and aggregation methods under consideration from 

simulation study.

• PCASSO most consistently identifies true nonzero feature effects →
better identification of which pathomic features are most informative of 

clinical outcome

• PCASSO more consistently identifies correct sign of nonzero feature 

effects → better identification of the directions of associations of 

pathomic features and clinical outcome

• Simulation results are preliminary; further simulations and real data 

analysis are needed to confirm performance of PCASSO
• Scalar outcome 𝑦𝑖 for each subject 𝑖 = 1,… , 𝑛

• Matrix-valued predictors 𝑋𝑖 ∈ ℝ𝑝𝑖×𝑞 , with 𝑞 < 𝑝𝑖, 𝑝𝑖 large
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