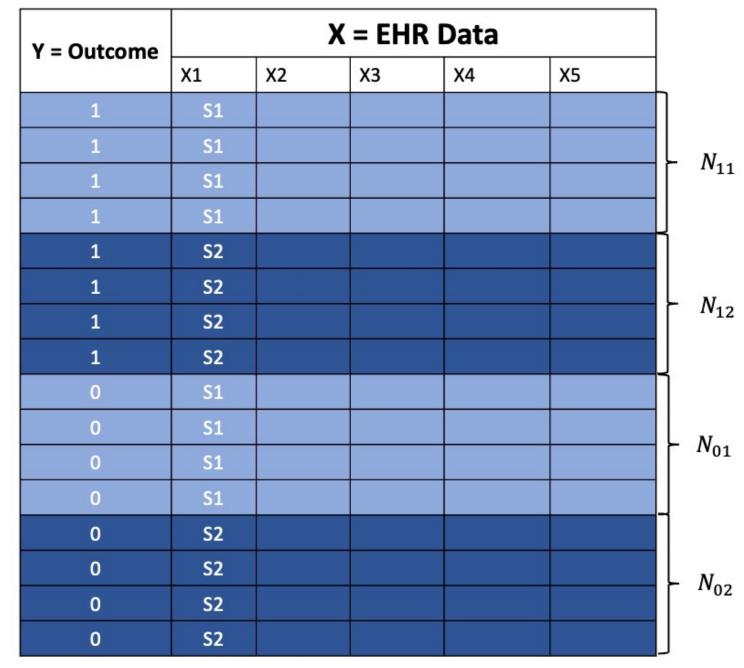

Pereinan School of Medicine UNIVERSITY of PENNSYLVANIA

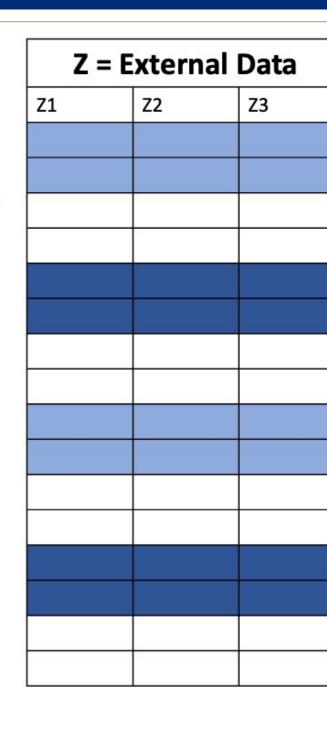
Introduction

- EHRs contain a wealth of information about a patient's health, making them valuable sources of data for building risk prediction models
- External data sources are often available to augment the EHR data • Surveys, Biobank, Wearable
- Incorporating external data has potential to improve predictive accuracy of model • 2 Major challenges:
- 1. External data available for a subset of patients
- 2. EHR data often high dimensional

Motivating Example

- Life expectancy in oncology patients overestimated by physicians
- Missed opportunities for advanced care planning and palliative care
- Models built using EHR data can predict patients at risk of short-term mortality
- Patient Reported Outcomes (PROs) commonly collected
- Not available for all patients
- Goal: Build a model to predict risk of short-term mortality using both EHR and PRO data • Using only the subset of patients with both EHR and PRO data available impacts model




Full.Data

0.70

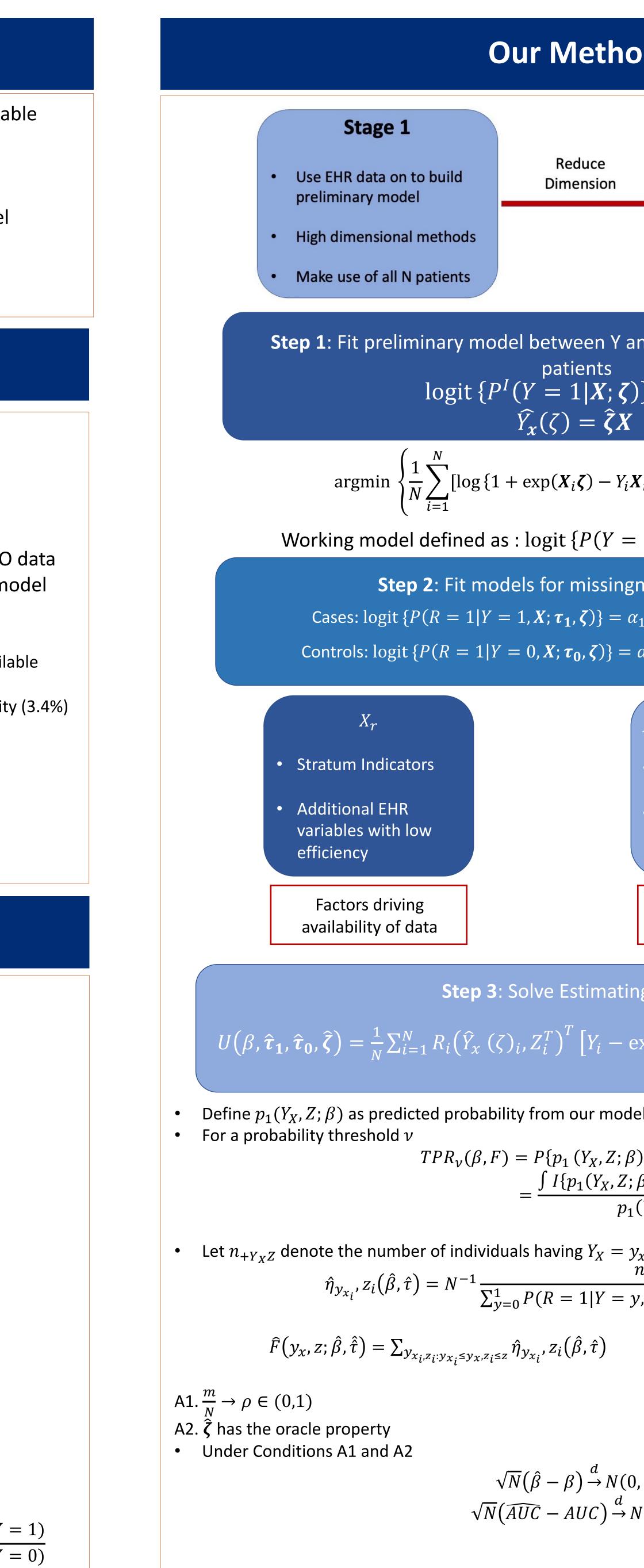
Reduced.Data

Two-Phase Sampling Design

 n_{11}

 n_{12}

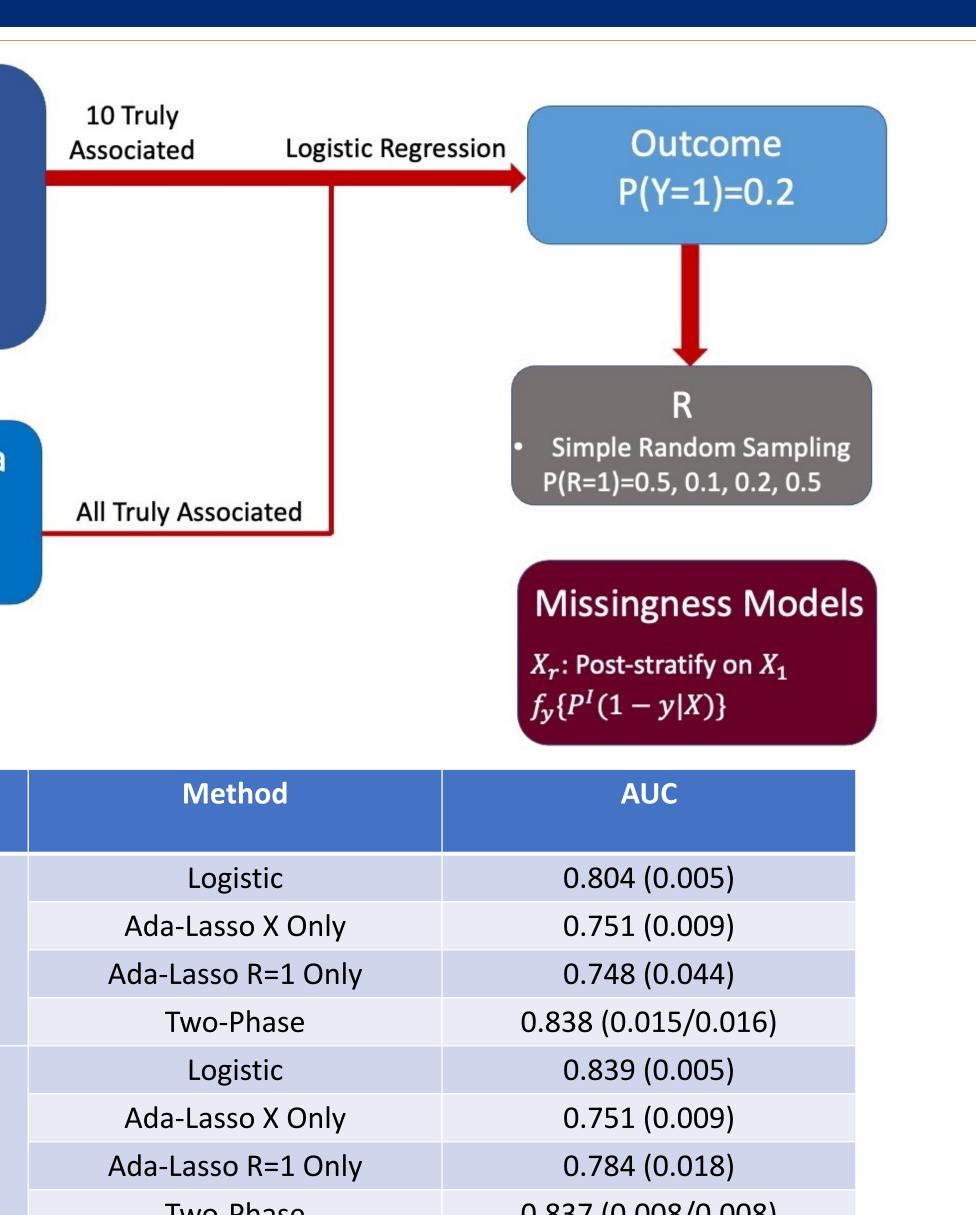
 n_{01}


 n_{02}

- Y: outcome of interest available for all patients
- X: EHR data available for N patients similar to phase I data
- Z: external data available for m patients (m<N) similar to phase II data
- *R*: indicator of whether or not *Z* is observed
- S_1, S_2, \dots, S_j : strata defined by X, $P(R = 1|X, Y) = N_{ys}/n_{ys}$
- Relationship between full data and subset of data with R = 1

 $o(X) = \log \frac{P(R = 1 | X, Y = 1)}{P(R = 1 | X, Y = 0)}$ $logit \{ P(Y = 1 | X, Z, R = 1) \} = logit \{ P(Y = 1 | X, Z) \} + o(X),$

• Existing methods cannot accommodate high dimensionality of X


A Two-Stage Modeling Approach for Building and Evaluating Risk Prediction Models Using High-Dimensional Two-Phase Data Jill Hasler¹, Changcheng Li², Runze Li², Ravi Parikh^{3,4}, Jinbo Chen¹

University of Pennsylvania, Perelman School of Medicine Departments of Biostatistics¹, Medicine³, and Medical Ethics⁴; Pennsylvania State University Department of Statistics²

	Simulation Study			
Stage 2 Fit logistic regression model using one dimensional score and Z Model o(X) using more of the data	EHR Data • 300 X Variables • ~ MVN(0,1) • X ₁ ~ Bern(0.2) N=10,000	10 Truly Associated	Logistic Regression	Outcome P(Y=1)=0.2
Using EHR data for all N $\boldsymbol{\zeta}^T \boldsymbol{X}$ $\lambda_n \sum_{j=1}^p \widehat{\boldsymbol{w}}_j \left\ \boldsymbol{\zeta}_j \right\ _1$	Augmenting Data • 3 Z Variables • ~ MVN(0,1)	All Truly Ass	ociated	• Simple Random Samplin P(R=1)=0.5, 0.1, 0.2, 0.5 Missingness Mode X_r : Post-stratify on X_1 $f_y\{P^I(1-y X)\}$
$\{\widehat{j=1}^{T} \widehat{Y}_{1} \} = \beta_{1}^{T} \widehat{Y}_{x}(\zeta) + \beta_{1}^{T} Z$	P(R=1)	Me	ethod	AUC
indicator, R + $f_1\{P^I(Y = 0 X; \hat{\zeta})\}$ $r + f_0\{P^I(Y = 1 X; \hat{\zeta})\}$ $I(Y = (1 - y) X; \hat{\zeta})\}$	0.05	Ada-Las Ada-Lass Two Lo Ada-Las	gistic sso X Only o R=1 Only -Phase gistic sso X Only o R=1 Only	0.804 (0.005) 0.751 (0.009) 0.748 (0.044) 0.838 (0.015/0.016) 0.839 (0.005) 0.751 (0.009) 0.784 (0.018)
mooth function predicted from ge 1 model omplex pattern ailability of data	EHR	Two-Phase 0.837 (0.008/0.008) Data Analysis EHR Only PRO Only EHR+PRO		
	AUC 0.86	5 (0.85-0.86)	0.75 (0.76-0.79)	0.89 (0.88-0.90)
ation	AUPRC 0.29	0 (0.25-0.32)	0.19 (0.16-0.22)	0.36 (0.31-0.40)
$P_1 \hat{Y}_x (\zeta)_i + \beta_2 Z_i + o(X) \}] = 0$	TPR 0.53	8 (0.49-0.56)	0.41 (0.35-0.47)	0.61 (0.56-0.65)
	FPR 0.06	5 (0.05-0.07)	0.08 (0.06-0.09)	0.05 (0.04-0.06)
Y = 1 $p_{1}(Y_{X}, Z; \beta) dF(Y_{X}, Z)$ $\beta) dF(Y_{X}, Z)$	Conclusion and Discussion			
d $Z = z$ simultaneously $\frac{z}{\hat{\tau}_y} P(Y = y Y_x, Z; \hat{\beta})$	 Proposed a pseudo-likeliho dimensional two-phase da Reduce dimension of high predictors feasible Future Direction Sampling individuals to Which future patients s 	ta dimensional X collect extern	Y to make estimation	ng joint distribution of
			erences	
			oropcoc	

Preparation. Zou, H. (2006). The adaptive lasso and its oracle properties. *Journal of the American statistical association*, 101(476), 1418-1429.

