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Background
• Non-additive interactions among genes are frequently associated with a number of

phenotypes, including known complex diseases such as Alzheimer’s, diabetes, and 
cardiovascular disease. 

• Detecting interactions requires careful selection of analytical methods, and some machine 
learning algorithms are unable or underpowered to detect or model feature interactions that 
exhibit non-additivity. 

• The Random Forest (RF) method is often employed in these efforts due to its ability to detect 
and model non-additive interactions. RF has the built-in ability to estimate feature importance 
scores, a characteristic that allows the model to be interpreted with the order and effect size 
of the feature association with the outcome. This characteristic is very important for 
epidemiological and clinical studies where results of predictive modeling could be used to 
define the future direction of the research efforts. 

• An alternative way to interpret the model is with a permutation feature importance metric 
which employs a permutation approach and with the Shapely additive explanations which 
employ cooperative game theory approach. 

• Currently, it is unclear which RF feature importance metric provides a superior estimation of 
the true informative contribution of features in genetic association analysis.

Methods
• We compared three feature importance metrics: RF’s built-in feature importance coefficients 

(BIC), mean SHAP values, and PFI coefficients in real and simulated datasets with non-additive 
interactions

• We used Heuristic Identification of Biological Architectures for simulating Complex Hierarchical 
Interactions (HIBACHI) software to simulate genetic datasets with non-additive epistatic 
interactions of different complexity.

• The HIBACHI framework has the ability to consider any desirable biological concept in the form 
of mathematical expressions that define the genotype-phenotype relationship and evolve 
models that can be used to simulate data consistent with that relationship. We set up a 
simulation goal to maximize two- or three-way interactions among features and compared RF’s 
feature importance metrics with the sensitivity analysis results of the simulated data that 
provided us with the ground truth information about the feature ranks

• To examine the convergence of the RF’s feature importance metrics we used two real-world 
datasets with evidence for non-additive interactions (genome-wide association study of 
Alzheimer’s Disease and a genome-wide association study of Primary Open Angle Glaucoma).

• We used the visualization of the statistical interaction network (ViSEN) method to analyze and 
visualize SNP main effects, and two-way and three-way gene-gene interactions among SNPs for 
real-world datasets via the mutual information and information gain terms. 

Conclusion 
§ We performed a comparative analysis of feature importance metrics with the aim to improve Random Forest’s interpretability in datasets with complex interactions. 
§ By analyzing both real and simulated data, we established that the permutation feature importance metric provides more precise feature importance rank estimation in the presence of non-additive interactions.

• Prediction uncertainty has been associated with RF predictions in the past and we 
attempted to reveal the true interpretation with the computational experiments 
driven by HIBACHI simulations.

• We set up a simulation goal to maximize two- or three-way interactions among 
features and compared RF’s feature importance metrics with the sensitivity analysis 
results of the simulated data that provided us with the ground truth information 
about the feature ranks. 

• In all HIBACHI experimental setups, which included such factors as the proportion of 
cases and controls, sample size and interaction complexity, PFI metrics produced the 
most precise feature ranking (Table 1, Fig. 3). 

• Although BIC and SHAP metrics misplaced feature ranks for the large percentage of 
replicates with BIC failed to identify the majority of them, it correctly identified 
features that belong to the interactive pair or trio by putting them as a top-ranked two 
and three features correspondingly. 

• While BIC and SHAP metrics can still be useful, when there is a need for an absolute 
precision, PFI estimation method should be used.

Figure 3. Effect size per feature rank estimated by PFI, BIC, SHAP and HIBACHI sensitivity 
analysis for sample size 1000 (a) and 10,000 (b). F1, F2, etc. – feature ranks, PFI -permutation 
feature importance, BIC – build-in coefficients, SHAP - shapley additive explanations, IG-
Information Gain, p25, p50 – percentage of cases

• Three feature importance metrics were considered, PFI, BIC and 
SHAP, and each was compared after RF analysis of data derived 
from genome-wide association studies of Glaucoma and 
Alzheimer’s.

• The resulting feature ranking confirms the lack of consensus 
between the studied metrics (Fig.2 A,B)

• The most powerful predictor of Alzheimer’s disease at this time is ApoE E4 gene 
variation: one or two copies of ApoE is associated with an increased risk of disease 
onset. Some carriers of ApoE E4 variation haven’t developed an Alzheimer’s disease 
so it is very likely that other genetic factors are involved in disease’s 
pathophysiology. ViSEN entropy-based analysis revealed several strong pairwise 
genetic interactions, along with the known largest independent signal from the 
ApoE variant (rs429358) (Fig.1A)

• ViSEN method allocated non-additive interactions within the Glaucoma disease 
dataset: several strong pairwise interactions in addition to the independent main 
effect contribution from the SNP affiliated with retinal ganglion cells pathology 
(rs2157719) have been confirmed (Fig.1B)

Figure 2. PFI and BIC estimates for Alzheimer’s (a) and Glaucoma (b) datasets. PFI -permutation feature 
importance, BIC – build-in coefficients, SHAP - shapley additive explanations

Figure 1. ViSEN plots for selected SNPs in Alzheimer’s (a) and Glaucoma (b) datasets. SNPs main effects, two-way and 
three-way IG values are noted respectively

Table 1. PFI, BIC and SHAP success in identification of feature ranks in datasets with two-way and three-way epistatic interactions. It is expressed 
as the percentage of a match of a metric rank’s estimate with the true feature rank that was retrieved with the HIBACHI sensitivity analysis
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