## Cell location recovery

in single-cell RNA sequencing

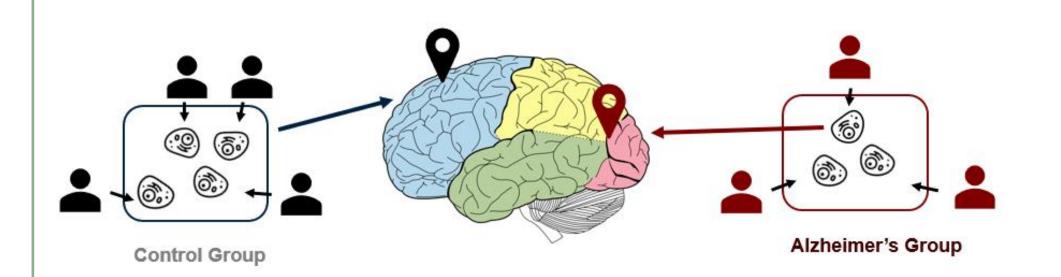


#### Qihuang Zhang **David Dai Edward Lee** Mingyao Li Rui Xiao Jian Hu

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania

#### Introduction

Motivation: Compare the spatial distribution of the cells for two groups:



#### Research Goal:

Can we predict the locations of these cells?

#### Data:

#### **Query Data**











# **Spatial Transcriptomics**

scRNA-seq

#### Idea:

- scRNA data contain richer cell-level information (e.g., cell type, disease status).
- Spatial transcriptomic data have location information.
- We train a model to learn the relationship between gene expression and location and then apply it to predict the location of scRNA.

#### Notation

#### Subject:

i: a spot (reference data) or a cell (query data)

#### Response:

- Task 1: Coordinates Prediction
  - (1) Point prediction
  - (2) Region prediction

$$Y_i = (Y_{i1}, Y_{i2}),$$

where  $Y_{i1}$  and  $Y_{i2}$  are continuous from

Task 2: Layer Prediction

 $Y_i$  is an ordinal variable taken from [1, 2, ..., 7]

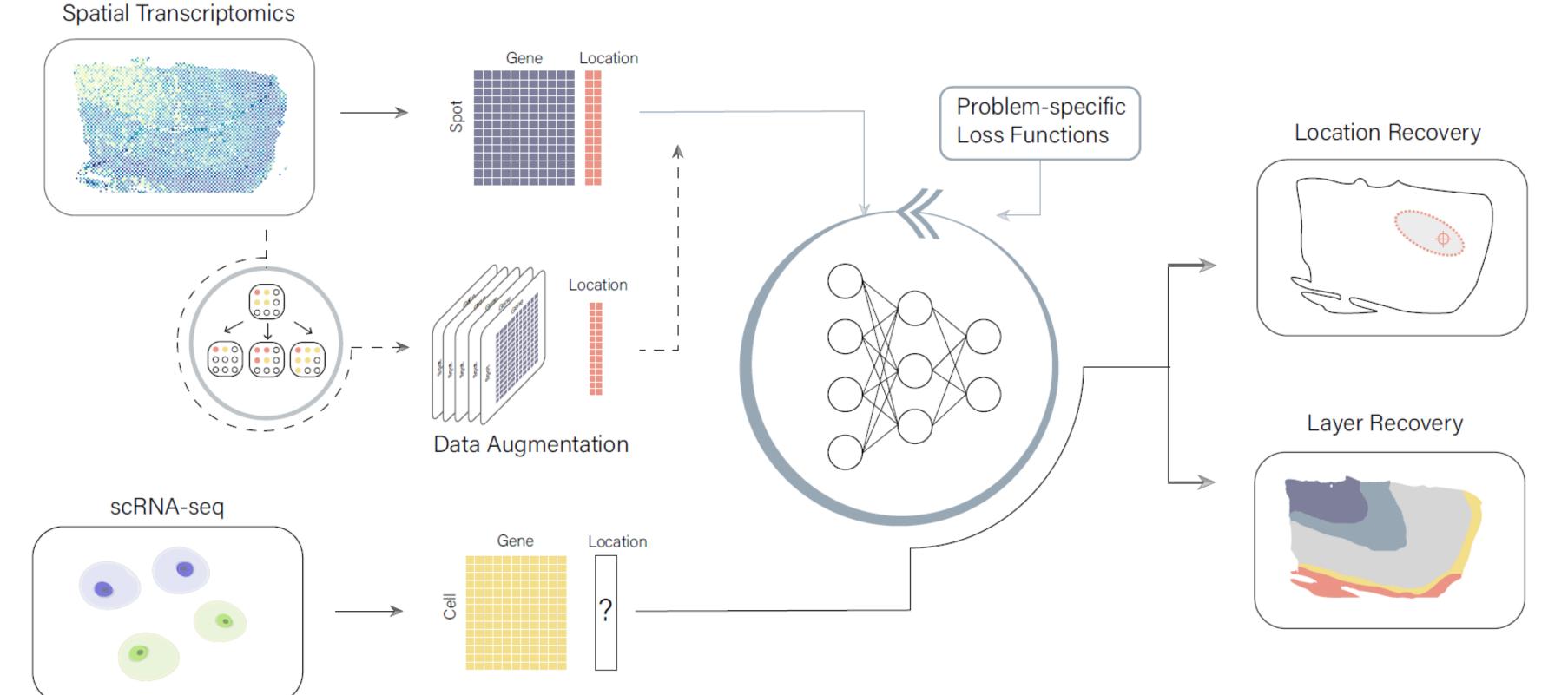
#### Covariate

 $X_{ij}$ : Gene expression of gene j. (A z-score normalization is performed.)

#### **Modeling objective**

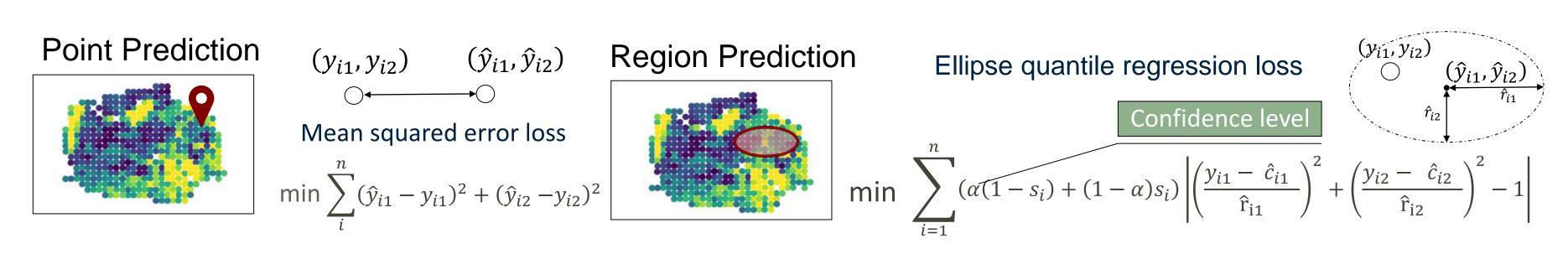
Build a prediction model  $f(y_i|x_i)$  to minimize the loss between the predicted value  $\hat{Y}_i$  and its truth  $Y_i$ .

#### Method

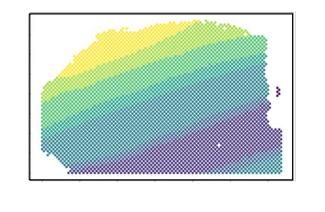


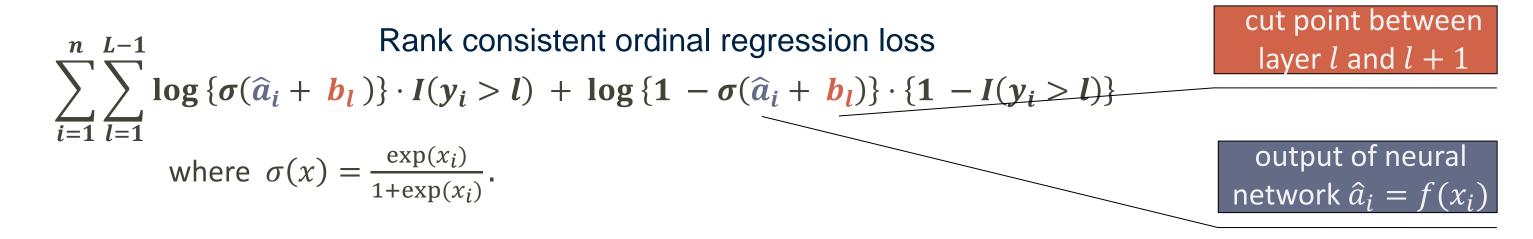
- > CeLEry takes spatial transcriptomic data as input for the training data and the scRNA-seq as testing data set.
- > CeLEry optionally generates replicates of the spatial transcriptomic data via variational autoencoder then includes them as the training data together with original spatial transcriptomic data.
- > A deep neural network is trained to learn the relationship between the spotwise gene expression and location information, minimizing the loss functions that are specified according to the specific problem.

#### **Loss Functions**

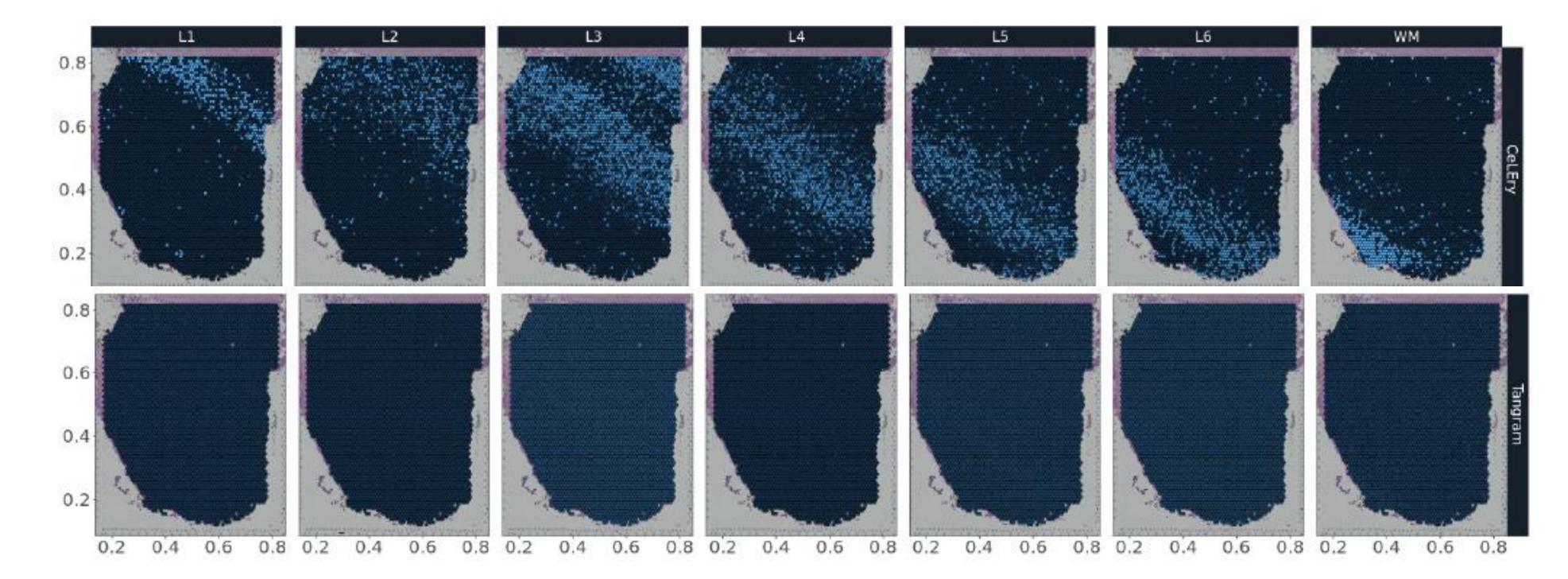


#### Layer Prediction

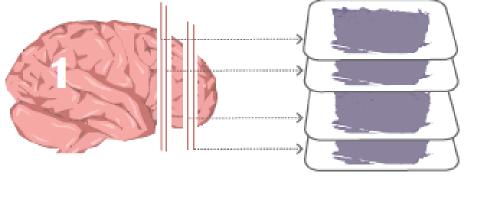




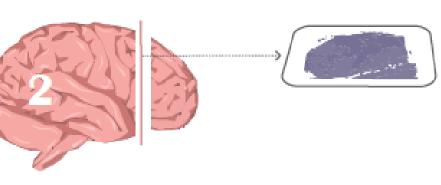
#### **Data Analyses**



#### Training Data Layer Truth



### **Testing Data**



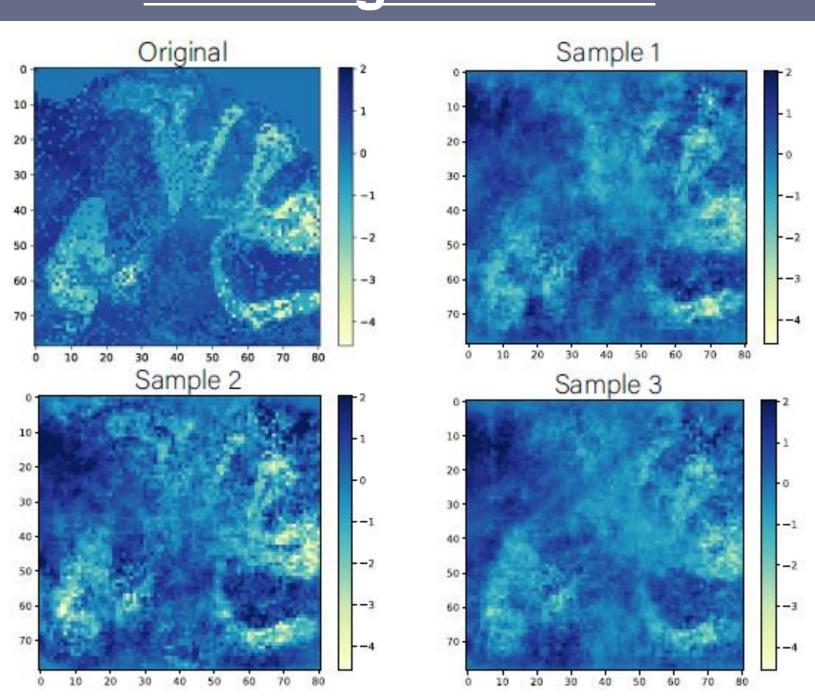
#### Study Procedure

- We took three slices from Brain 1 to be the training data and one slice from Brain 2 to be the testing evaluation.
- For each layer, we report the probability of predicting each spot to this layer based on results from CeLEry and Tangram.
- We compare the results with the true layer segmentation.

#### **❖ Results**

CeLEry has better accuracy in classifying the layer source of each spot.

#### **Data Augmentation**



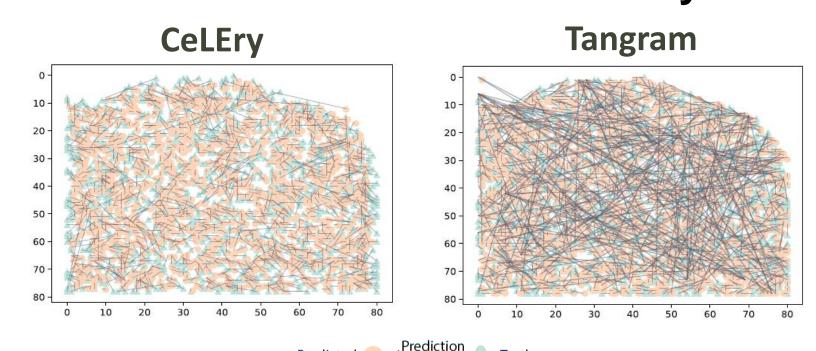
The generated samples maintained the overall pattern of the original gene map while keeping their own variation.

#### **Benchmark Study**

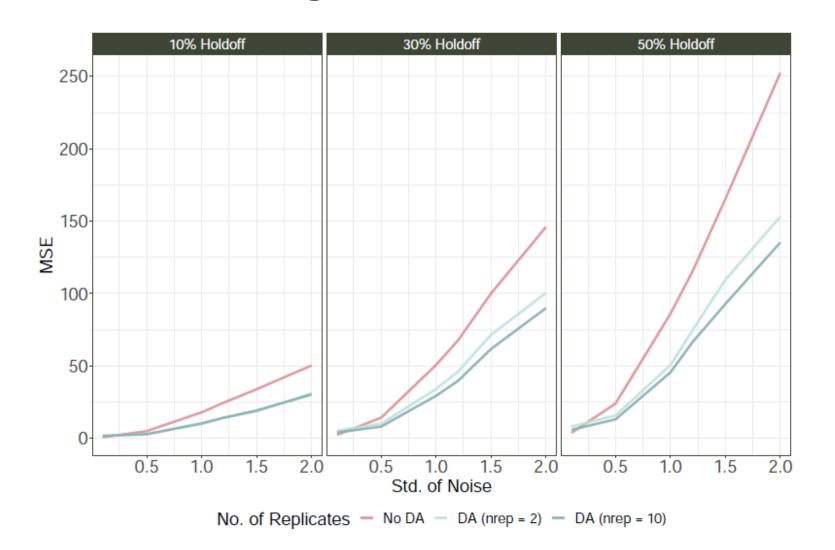
# **Mouse Posterior Data**

Training: 70% of spots Testing: 30% of spots (10%, 30%, 50%)

#### Coordinates Prediction Accuracy

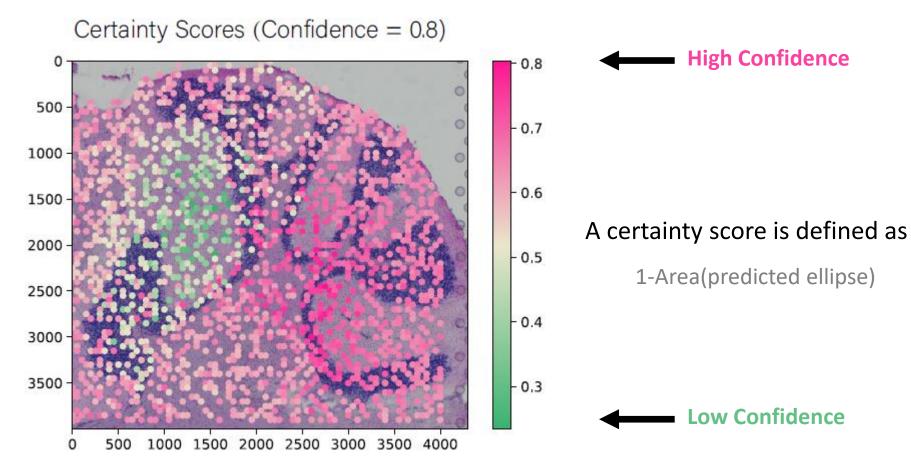


#### Robustness against noise



The data augmentation procedure improves the robustness against the noises in the data.

#### Prediction Uncertainty



- ✓ The high confidence spots are aligned with the dark region in the brain (granular layer)
- ✓ The low confidence spots are clustered

#### Acknowledgement

This project is under the supervision of Dr. Mingyao Li and Dr. Rui Xiao.

