Cell location recovery

in single-cell RNA sequencing

Qihuang Zhang **David Dai Edward Lee** Mingyao Li Rui Xiao Jian Hu

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania

Introduction

Motivation: Compare the spatial distribution of the cells for two groups:

Research Goal:

Can we predict the locations of these cells?

Data:

Query Data

Spatial Transcriptomics

scRNA-seq

Idea:

- scRNA data contain richer cell-level information (e.g., cell type, disease status).
- Spatial transcriptomic data have location information.
- We train a model to learn the relationship between gene expression and location and then apply it to predict the location of scRNA.

Notation

Subject:

i: a spot (reference data) or a cell (query data)

Response:

- Task 1: Coordinates Prediction
 - (1) Point prediction
 - (2) Region prediction

$$Y_i = (Y_{i1}, Y_{i2}),$$

where Y_{i1} and Y_{i2} are continuous from

Task 2: Layer Prediction

 Y_i is an ordinal variable taken from [1, 2, ..., 7]

Covariate

 X_{ij} : Gene expression of gene j. (A z-score normalization is performed.)

Modeling objective

Build a prediction model $f(y_i|x_i)$ to minimize the loss between the predicted value \hat{Y}_i and its truth Y_i .

Method

- > CeLEry takes spatial transcriptomic data as input for the training data and the scRNA-seq as testing data set.
- > CeLEry optionally generates replicates of the spatial transcriptomic data via variational autoencoder then includes them as the training data together with original spatial transcriptomic data.
- > A deep neural network is trained to learn the relationship between the spotwise gene expression and location information, minimizing the loss functions that are specified according to the specific problem.

Loss Functions

Layer Prediction

Data Analyses

Training Data Layer Truth

Testing Data

Study Procedure

- We took three slices from Brain 1 to be the training data and one slice from Brain 2 to be the testing evaluation.
- For each layer, we report the probability of predicting each spot to this layer based on results from CeLEry and Tangram.
- We compare the results with the true layer segmentation.

❖ Results

CeLEry has better accuracy in classifying the layer source of each spot.

Data Augmentation

The generated samples maintained the overall pattern of the original gene map while keeping their own variation.

Benchmark Study

Mouse Posterior Data

Training: 70% of spots Testing: 30% of spots (10%, 30%, 50%)

Coordinates Prediction Accuracy

Robustness against noise

The data augmentation procedure improves the robustness against the noises in the data.

Prediction Uncertainty

- ✓ The high confidence spots are aligned with the dark region in the brain (granular layer)
- ✓ The low confidence spots are clustered

Acknowledgement

This project is under the supervision of Dr. Mingyao Li and Dr. Rui Xiao.

