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CeLEry: cell location recovery
in single-cell RNA sequencing

Motivation: Compare the spatial 

distribution of the cells for two groups:

❖Prediction Uncertainty

❖Coordinates Prediction Accuracy

Data: 
Query Data

Reference Data

Can we predict the locations of 

these cells?

Research Goal:

Gene expression

Location

Gene expression

Location

Covariate
𝑋𝑖𝑗: Gene expression of gene 𝑗. 

(A z-score normalization is performed.)

Modeling objective 
Build a prediction model 𝑓(𝑦𝑖|𝑥𝑖) to 

minimize the loss between the predicted 

value ෠𝑌𝑖 and its truth 𝑌𝑖.

• Task 1:  Coordinates Prediction
(1) Point prediction  

(2) Region prediction

• Task 2:  Layer Prediction

𝑖: a spot (reference data) or 

a cell (query data)

Subject:

Response:

𝑌𝑖 is an ordinal variable taken from 

[1, 2, …, 7]

𝑌𝑖 = 𝑌𝑖1, 𝑌𝑖2 ,
where 𝑌𝑖1 and 𝑌𝑖2 are continuous from 

0,1

High Confidence

Low Confidence

A certainty score is defined as

1-Area(predicted ellipse)

The data augmentation procedure improves the 

robustness against the noises in the data.

CeLEry Tangram

Mouse Posterior Data

Training:  70% of spots

Testing: 30% of spots

(10%, 30%, 50%)Loss Functions

Point Prediction Region Prediction

Layer Prediction

where  𝜎 𝑥 =
exp(𝑥𝑖)

1+exp(𝑥𝑖)
.
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Rank consistent ordinal regression loss 
cut point between
layer 𝑙 and 𝑙 + 1

output of neural 
network ො𝑎𝑖 = 𝑓(𝑥𝑖)
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Confidence level

Ellipse quantile regression loss ො𝑦𝑖1, ො𝑦𝑖2
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Mean squared error loss
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Training Data

Testing Data

Layer Truth ❖Study Procedure
➢ We took three slices from Brain 1 to be the 

training data and one slice from Brain 2 to be the 

testing evaluation. 

➢ For each layer, we report the probability of 

predicting each spot to this layer based on results 

from CeLEry and Tangram.

➢ We compare the results with the true layer 

segmentation.

❖Results
✓ CeLEry has better accuracy in classifying the 

layer source of each spot. 

➢ CeLEry takes spatial transcriptomic data as input for the training data and the scRNA-seq as testing data set. 

➢ CeLEry optionally generates replicates of the spatial transcriptomic data via variational autoencoder then includes them as 

the training data together with original spatial transcriptomic data. 

➢ A deep neural network is trained to learn the relationship between the spotwise gene expression and location information, 

minimizing the loss functions that are specified according to the specific problem. 

✓ The high confidence spots are aligned with the dark 

region in the brain (granular layer)

✓ The low confidence spots are clustered

The generated samples maintained the overall pattern of 

the original gene map while keeping their own variation.

Idea:
o scRNA data contain richer cell-level information 

(e.g., cell type, disease status).

o Spatial transcriptomic data have location 

information.

o We train a model to learn the relationship 

between gene expression and location and then 

apply it to predict the location of scRNA.


