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Material	and	methods

Experiments	and	Results

Methods Training	results Mean	± std

JCB-SCCA
Average 0.4460 0.4760 0.4637 0.4346 0.4339 0.4508	± 0.0185

fMRI-SNPs 0.1001 0.1972 0.1708 0.1216 0.1214 0.1422	± 0.0402

dMRI-SNPs 0.7919 0.7548 0.7567 0.7476 0.7464 0.7594	± 0.0186

SCCA
Average 0.4144 0.4227 0.4277 0.4339 0.4017 0.4200	± 0.0124

fMRI-SNPs 0.1098 0.0944 0.0991 0.1164 0.1467 0.1132	± 0.0206

dMRI-SNPs 0.7190 0.7509 0.7562 0.7513 0.6568 0.7268	± 0.0418

Methods Test	results Mean	± std

JCB-SCCA
Average 0.3682 0.4182 0.4613 0.4022 0.5095 0.4318	± 0.0548

fMRI-SNPs 0.1437 0.0543 0.1671 0.0206 0.1515 0.1074	± 0.0655

dMRI-SNPs 0.5927 0.782 0.7555 0.7837 0.8676 0.7563	± 0.1007

SCCA
Average 0.2702 0.4587 0.3692 0.3879 0.4209 0.3813	± 0.0708

fMRI-SNPs 0.0249 0.1696 0.0605 0.1237 0.0234 0.0804	± 0.0643

dMRI-SNPs 0.5154 0.7478 0.6778 0.6522 0.8183 0.6822	± 0.1135
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Data acquisition and pre-processing:
A total of 291 subjects of neuroimaging and
genotyping data were obtained from the
Human Connectome Project (HCP) database
[5]. Functional and structural connectivity
were used as edge measurements for
functional and structural connectivity,
respectively. We then computed the degree
centrality of each node based on functional and
structural connectivity. For the genotype data,
we controlled the quality of genotype data, and
then conducted a genome-wide association
analysis to select candidate SNPs related to
depression (p < 0.0005).

Prediction task: We built a prediction model for the Pittsburgh sleep quality index (PSQI) using the
identified biomarkers. We built the prediction models based on ridge regression. The algorithm was
compared with five different models using different sets of the biomarkers: 1) those from SCCA, 2)
fMRI biomarker alone, 3) dMRI biomarker alone, 4) SNPs alone, and 5) all fMRI, dMRI, and SNPs
together. The performance of a linear regression model was assessed with root-mean-squared error
(RMSE) and the correlation coefficient between predicted and actual PSQI scores

Result: The association between dMRI and SNPs was more robust than the association between fMRI
and SNPs in both algorithms (Table 1, and Figure 2). Additionally, we found that our model showed
improved prediction performance compared with the other models(Table 2).
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Background: Sleep is an essential phenomenon for
maintaining good health and wellbeing [1].
Some studies reported that genetic and
imaging biomarkers that depression is
associated with sleep disorder [2]–[4].

Imaging genetics: Many studies adopted imaging
genetics methodology to find associations
between imaging and genetic biomarkers. In
this study, we examine the imaging genetics
association in depression and extract
biomarkers for predicting the quality of sleep.

Overview

Methods RMSE r

JCB-SCCA 2.8921 0.2882

SCCA 3.0576 0.2231

fMRI	alone 3.6410 -0.204

dMRI	alone 3.4193 0.0335

SNPs	alone 3.7330 0.0705

fMRI	+	dMRI	+	SNP	 3.0724 0.1798
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Imaging genetics model: The joint-connectivity-based sparse canonical
correlation analysis (JCB-SCCA) was applied on preprocessed features
(Figure 1). JCB-SCCA has an advantage for incorporating connectivity
information and can handle multi-modal neuroimaging datasets.

Prior biological knowledge: The average connectivity matrix computed
from the HCP dataset and linkage disequilibrium obtained from 1,000
genome project were used as the prior connectivity information of the
algorithm. The parameters of the algorithm were tuned jointly by nested
five-fold cross-validation. Figure	1.	JCB-SCCA

Table	1.	Nested	five-fold	cross-validation	results Figure	2.	Estimated	loading	vectors Table	2.	Prediction	performance
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