Imaging genetic strategies for predicting the quality of sleep using depression-specific biomarkers

Mansu Kim¹, Xiaohui Yao¹, Bo-yong Park², Jingwen Yan³, and Li Shen^{1,*}

¹Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, USA ²McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Canada ³Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University, USA * Correspondence to li.shen@pennmedicine.upenn.edu

Overview

Background: Sleep is an essential phenomenon for maintaining good health and wellbeing [1]. Some studies reported that genetic and imaging biomarkers that depression is associated with sleep disorder [2]–[4].

Imaging genetics: Many studies adopted imaging genetics methodology to find associations between imaging and genetic biomarkers. In this study, we examine the imaging genetics association in depression and extract biomarkers for predicting the quality of sleep.

Joint-connectivity-based sparse CCA

Imaging genetics model: The joint-connectivity-based sparse canonical correlation analysis (JCB-SCCA) was applied on preprocessed features (Figure 1). JCB-SCCA has an advantage for incorporating connectivity information and can handle multi-modal neuroimaging datasets.

Prior biological knowledge: The average connectivity matrix computed from the HCP dataset and linkage disequilibrium obtained from 1,000 genome project were used as the prior connectivity information of the algorithm. The parameters of the algorithm were tuned jointly by nested five-fold cross-validation.

Material and methods

Data acquisition and pre-processing:

A total of 291 subjects of neuroimaging and genotyping data were obtained from the Human Connectome Project (HCP) database [5]. Functional and structural connectivity Figure 1. JCB-SCCA

Experiments and Results

Prediction task: We built a prediction model for the Pittsburgh sleep quality index (PSQI) using the identified biomarkers. We built the prediction models based on ridge regression. The algorithm was compared with five different models using different sets of the biomarkers: 1) those from SCCA, 2) fMRI biomarker alone, 3) dMRI biomarker alone, 4) SNPs alone, and 5) all fMRI, dMRI, and SNPs together. The performance of a linear regression model was assessed with root-mean-squared error (RMSE) and the correlation coefficient between predicted and actual PSQI scores

Result: The association between dMRI and SNPs was more robust than the association between fMRI and SNPs in both algorithms (Table 1, and Figure 2). Additionally, we found that our model showed improved prediction performance compared with the other models(Table 2).

Met	hods		Training results					
	Average	0.4460	0.4760	0.4637	0.4346	0.4339	0.4508 ± 0.0185	
JCB-SCCA	fMRI-SNPs	0.1001	0.1972	0.1708	0.1216	0.1214	0.1422 ± 0.0402	
	dMRI-SNPs	0.7919	0.7548	0.7567	0.7476	0.7464	0.7594 ± 0.0186	

JCE	B-SCCA						
•	<first fold=""></first>	<second fold=""></second>	<third fold=""></third>	<fourth fold=""></fourth>	<fifth fold=""></fifth>		Metl
SNP	0.4	0.4	0.4	0.4	0.4	_	
5111	0 H 4 -0.2	0 1 10 150 200 250 350 400 450	0 = 91 -0.2	0 4 -0.2	0 50 160 150 200 250 300 350 400 450		
MDI	02 mini fill dat		02 Trad the set is a set is the line of a		02 of 1 million r. Black to a star		JCB-3
MUL	-02	-02	-02	-02-	-02		

Methods	RMSE	r
JCB-SCCA	2.8921	0.2882

were used as edge measurements for functional and structural connectivity, respectively. We then computed the degree centrality of each node based on functional and structural connectivity. For the genotype data, we controlled the quality of genotype data, and then conducted a genome-wide association analysis to select candidate SNPs related to depression (p < 0.0005).

Shen Lab: https://www.med.upenn.edu/shenlab

DEPARTMENT of BIOSTATISTICS EPIDEMIOLOGY & INFORMATICS

	Average	0.4144	0.4227	0.4277	0.4339	0.4017	0.4200 ± 0.0124	dMRI "	SCCA	3.0576	0.2231
SCCA	fMRI-SNPs	0.1098	0.0944	0.0991	0.1164	0.1467	0.1132 ± 0.0206				
	dMRI-SNPs	0.7190	0.7509	0.7562	0.7513	0.6568	0.7268 ± 0.0418		fMRI alone	3.6410	-0.204
Methods			Test results				Mean \pm std	< SCCA			
	Average	0.3682	0.4182	0.4613	0.4022	0.5095	0.4318 ± 0.0548		dMRI alone	3.4193	0.0335
JCB-SCCA	fMRI-SNPs	0.1437	0.0543	0.1671	0.0206	0.1515	0.1074 ± 0.0655				
	dMRI-SNPs	0.5927	0.782	0.7555	0.7837	0.8676	0.7563 ± 0.1007		SNPs alone	3.7330	0.0705
	Average	0.2702	0.4587	0.3692	0.3879	0.4209	0.3813 ± 0.0708				
SCCA	fMRI-SNPs	0.0249	0.1696	0.0605	0.1237	0.0234	0.0804 ± 0.0643		I + dMRI + SNP	3.0724	0.1798
	dMRI-SNPs	0.5154	0.7478	0.6778	0.6522	0.8183	0.6822 ± 0.1135	עב שה עם שה עד שה עד שי עד שי שה שה שה שה עה עד שו איז שי שי שה שי שיד שי שר שי שם שה שה שה שי שי שה שה עד עור שי ש			
Table 1. Nested five-fold cross-validation results					validat	ion resi	ults	Figure 2. Estimated loading vectors Tak	ole 2. Predict	ion perfc	ormance

References

[1] J. Adrien, "Neurobiological bases for the relation between sleep and depression," Sleep Med. Rev., vol. 6, no.5, pp. 341–351, 2002.
[2] L. Amorim et al., "Poor Sleep Quality Associates With Decreased Functional and Structural Brain Connectivity in Normative Aging:

A MRI Multimodal Approach," Front. Aging Neurosci., vol. 10, no. November pp. 1–16, 2018.

[3] A. Sehgal and E. Mignot, "Genetics of sleep and sleep disorders," Cell, vol. 146, no. 2, pp. 194–207, 2011.

[4] A. M. Gregory, F. V. Rijsdijk, J. Y. F. Lau, R. E. Dahl, and T. C. Eley, "The direction of longitudinal associations between sleep problems

and depression symptoms: A study of twins aged 8 and 10 years," Sleep, vol. 32, no. 2, pp. 189–199, 2009.

[5] D. C. Van Essen et al., "The WU-Minn human connectome project: an overview," Neuroimage, vol. 80, pp. 62–79, 2013.

Acknowledgements: This work was supported in part by the National Institutes of Health [R01 EB022574] and National Science Foundation [IIS 1837964].