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Data-driven optimal treatment strategies can benefit individual patients, care providers, and 
other stakeholders by improving outcomes and lowering healthcare costs. An optimal 
treatment decision rule maximizes a population-level distributional summary such as the 
expected value of a clinical outcome. Guidance for estimating optimal decision rules in the 
presence of missing data is limited, and most existing methods rely on having a complete set 
of data that are observed. We propose a multiple imputation framework for estimating 
optimal decision rules for data with missing at random (MAR) missingness using simulations 
and discuss guidance for reproducible inference. These finds are applied to data from the 
randomized trial Social Incentives to Encourage Physical Activity and Understand Predictors 
(STEP UP), which compared multiple interventions aimed at increasing daily step counts 
among employees at a large professional services company.

wAssume the complete data from n trial participants of a single-stage randomized trial have 
the form 𝑋! , 𝐴! , 𝑌! !"#

$ , where 𝑋! ∈ 𝒳 ⊆ ℝ% is baseline patient information measured 
prior to randomization, 𝐴! ∈ {−1, 1} is the treatment assignment for the 𝑖th individual, and 
𝑌! is the clinical outcome, which we assume has been coded so that larger values are 
clinically desirable. 

wA decision rule is a function that takes in information about an individual and outputs a 
recommended treatment for that person, i.e. 𝑑(𝑥) is a map 𝑑:𝒳 → −1, 1 .

wThe Value of a decision rule 𝑑(𝑥) is 𝑉 𝑑 = 𝐸&(𝑌). 
wAn optimal decision rule, 𝑑∗(𝑥), is defined such that 𝑉(𝑑∗) ≥ 𝑉(𝑑) for all 𝑑(𝑥).
wOne way to estimate an optimal decision rule is by specifying a model (e.g., linear) for the 

Q-function, 𝑄 𝑥, 𝑎 ≜ 𝐸 𝑌 𝑋, 𝐴). 

wTwo common estimators for the Value are the inverse-probability weighted (IPW) and 
augmented inverse probability-weighted estimator (AIPW). Let 𝐶& = I{𝐴 = 𝑑 𝑋 } indicate 
whether an individual’s assigned treatment 𝐴 coincides with the recommended treatment 
under 𝑑 and 𝜋& 𝑋 = 𝑃 𝐶& = 1 𝑋). Then, the IPW estimator of 𝑉(𝑑) is @𝒱()* 𝑑 =
#
$
∑!"#$ +!,#,#

-!(/ #; 12)
, and @𝒱4()* 𝑑 = #

$
∑!"#$ +!,#,#

-!(/ #; 12)
− +!,#5 -! / #; 12

-! / #; 12
C𝑄$ (𝑋 ! , 𝑎! = 𝑑 𝑋! ) .

wFor fixed 𝑑, these estimators are asymptotically normal with variances of known form.

w In settings where the data are MAR, multiple imputation (MI) is a method for handling 
missingness that provides unbiased results and valid inference. Given 𝑟 = 1,… , 𝑅 training 
imputations we obtain a model-averaged decision rule G𝑑64∗ 𝑥 and estimate its Value by 
averaging estimates from 𝑅 independent test sets:  @𝑉64 =

#
7
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wThe average within-imputation variance is then estimated by H𝜎*9 = $
%
∑7"#8 H𝜎:;<=>,79 , where  

is an estimate of var(J𝑉7). The between-imputation variance is estimated by the sample 
variance of the 𝑅 Value estimates: H𝜎@9 =

#
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∑7"#8 [ @𝑉7 − @𝑉64
9]. Applying Rubin’s Rules, 

our final estimate of the variance of the Value is H𝜎:9 = H𝜎@9 +
#
8
H𝜎@9 + H𝜎*9 . 

wWe adapted von Hippel’s (2018) two-stage quadratic rule for determining the number of 
imputations that provides replicability of standard error estimates. 

wData generation for simulation studies (n=300 split 1:1 into training/testing):
w𝑋 = 1, 𝑋9 A where 𝑋9 is a five-feature vector generated from a multivariate normal 
distribution with exchangeable correlation of 0.1
w𝐴 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 −1, 1
w𝑌 = 𝛾B𝑋 + 𝐴 𝜙A𝑋 + 𝜖,where 𝜖 ~ 𝑁(0, 5)

wFor differing missingness scenarios and varying number of imputations, the AIPW 
estimator yielded higher estimates of Value and lower estimates of variance than its IPW 
counterpart.

wVariability of estimators of Value most notably decreased from r=5 to r=25 in our 
simulation studies, which suggests that defaulting to r=5 imputations would not have 
been sufficient for estimating Value in the presence of missing data.

wDiffering recommended number of imputations from the two-stage quadratic rule 
procedure in the STEP UP analysis further demonstrate that concerns for reproducible 
standard errors can drive the choice of imputations when estimating optimal treatment 
decision rules.
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Figure 2. Distribution of variance estimates for differing MAR scenarios. 

Figure 1. Distribution of Value estimates  for differing MAR scenarios. 

Methods (contd.)
w Induced MAR, targeting 30% missingness with 3 scenarios: missingness 

only in outcome Y, missingness in outcome Y and a covariate X4, and 
weak MAR with missingness in outcome Y and all covariates

wMultiple imputation via chained equations (MICE) was used for 
addressing missingness, specifying r=5, 10, 25, 50, and 100 
imputations. Simulations were run with 1000 iterations for each 
scenario. 

Figure 3. Diagram of STEP UP trial design (left) and estimates of Value with accompanying asymptotically normal 95% 
confidence intervals with the AIPW estimator for varying decision rules (right). 

wEstimated a decision rule to recommend either collaborative or competitive using the 
AIPW estimator.

wApplied von Hippel’s two-stage quadratic rule targeting a standard deviation of the 
standard error estimates of 0.5 across 100 replications. 

wUsing r=5 (r=10) imputations in the first stage of the procedure yielded r=42 (r=18) 
recommended imputations for achieving replicable standard errors.

wThe estimated optimal decision rule based on Q-learning with linear models did not 
perform better than the AIPW estimate of the non-personalized rule that recommends 
everyone to the competitive intervention.


