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Introduction

Motivated by the Acute Respiratory Distress Syndrome Network (ARDSNetwork)
ARDS respiratory management (ARMA) trial [1], we developed a flexible machine
learning approach using the Bayesian additive regression trees (BART) [2] under
the principal stratification framework to estimate the average causal effect and
heterogeneous causal effects among the always-survivors stratum when clinical
outcomes are subject to truncation. In the analysis, we found that the low tidal
volume treatment had an overall benefit for patients sustaining acute lung injuries
on the outcome of time to returning home, but substantial heterogeneity in treat-
ment effects among the always-survivors, driven most strongly by sex and the
alveolar-arterial oxygen gradient at baseline (AaDO2, a physiologic measure of
lung function and pulmonary pathology).

Causal Assumptions and Setup

Consider the ARMA trial (two-arm randomized) with N = 861 participants. Ti:
binary treatment for participant i (1: treatment, mechanical ventilation treatment
with a volume of 6 mL/kg of predicted body weight; 0: control, mechanical ven-
tilation treatment with a volume of 12 mL/kg of predicted body weight). Yi(t):
non-mortality outcome of days to returning home (DTRH) that would be observed
under treatment assignment t. Di(t): survival status of participant i at the time
that the measurement of the non-mortality outcome (1: alive; 0: death) was taken.
Xi: baseline characteristics of participant i, including (i) demographic informa-
tion, (ii) respiratory measures, and (iii) physiological measures. We make the
following assumptions:

Assumption 1. (Stable Unit Treatment Value Assumption). Let t and t′ be
any two possible treatment assignments. If ti = t′i, then Di(t) = Di(t

′) and
Yi(t) = Yi(t

′).
Assumption 2. (Randomization). The assignment variable Ti is independent
of all potential outcomes {Di(1), Di(0), Yi(1), Yi(0)}, given baseline charac-
teristics Xi.
Assumption 3. (Monotonicity). P(Di(1) ≥ Di(0)|Xi = x) = 1, ∀ x ∈ X ,
where X is the support of X.

Using the principal stratification framework [3], each participant can be classi-
fied into distinct principal strata (Si), always-survivors (Si = 11): participants who
would survive under either treatment status; protected (Si = 10): participants who
would survive under treatment but would die under control; harmed (Si = 01): par-
ticipants who would die under treatment but would survive under control; never-
survivors (Si = 00): participants who would die under either treatment status. For
always-survivors, a causal estimand, the Survivor Average Causal Effect (SACE),
is defined as

∆SACE = E[Yi(1)− Yi(0)|Si = 11].

Further, the individualized treatment effect for individual i, the Conditional Sur-
vivor Average Causal Effect (CSACE), is defined as

∆CSACE(x) = E[Yi(1)− Yi(0)|Xi = x, Si = 11].

Variations in ∆CSACE(x) measure the degree of treatment effect heterogeneity
among the always-survivors. and may provide useful evidence for tailoring treat-
ment rules for future participants.

Methodology

We consider the Bayesian principal stratification framework [4], where two sets of models
are to be specified: the distribution of Y (0) and Y (1) given S and X (the Y -model), and the
distribution of S given X (the S-model). According to values of Ti and Di, each participant
can be reclassified into: O(1, 1), assigned to the treatment and survived; O(1, 0), assigned
to the treatment and died; O(0, 1), assigned to the control and survived; O(0, 0), assigned to
the control and died. For participants in O(1, 0) and O(0, 1), Si are fully inferred Assumption
3. For participants in O(1, 1) and O(0, 0), Si require imputation. Denote πi,s = P(Si =
s|Xi,θ) and fi,st = P(Yi(t)|Si = s,Xi,θ), for s = 00, 10, 11 and t = 0, 1. The posterior
distribution of model parameters, θ, can be generically written as

P(θ|Y ,Sobs,T ,X) ∝ P(θ)×
∏

i∈O(1,1)

(
πi,11fi,111 + πi,10fi,101

)
×

∏
i∈O(1,0)

πi,00

×
∏

i∈O(0,1)

πi,11fi,110 ×
∏

i∈O(0,0)

(
πi,10 + πi,00

)
,

where P(θ) is the prior distribution. Posterior inference on θ involving imputing missing Si
is performed via a nested Probit modeling approach. Two additional latent variables Z and
W to be augmented for each participant, where

{Zi|mZ(•),Xi} ∼ N (mZ(Xi), 1) , and
{
Si = 00, if Zi > 0
Si = 10 or 11, if Zi ≤ 0

{Wi|mW (•),Xi} ∼ N (mW (Xi), 1) , and
{
Si = 10, if Wi > 0
Si = 11, if Wi ≤ 0

Here, mZ(•) and mW (•) are conditional mean functions to be estimated for the S-model.
Further, P(Si = 00|•) = P(Zi > 0|mZ(Xi)), P(Si = 10|•) = P(Zi ≤ 0|mZ(Xi))P(Wi >
0|mW (Xi)), and P(Si = 11|•) = P(Zi ≤ 0|mZ(Xi))P(Wi ≤ 0|mW (Xi)) where Φ(•) is the
standard normal cumulative distribution function. For the Y -models,

{Yi(t)|Si = s,mst(•),Xi} ∼ N
(
mst(Xi), σ

2
st

)
,

where t = 0, 1 for s = 11, and t = 1 for s = 10; mst(•) are conditional mean functions to
be estimated for Yi(t), and σ2st is the variance parameter. A BART estimator is proposed to
estimate the mean functions nonparametrically to reduce bias:

m(X) =

J∑
j=1

h(X ; Tj,Mj),

where Tj is a binary tree and Mj are terminal node parameters of Tj. A Gibbs sampling
procedure (Metropolis-within-Gibbs) was proposed for posterior inference. Posteriors of the
SACE and CSACE are also obtained.

Results

In the ARMA trial, 30.3% of participants can be directly identified as always-survivors, and
another 30.6% can only be identified by the model (total likely always-survivors: 60.9%).
The posterior mean of SACE is −23.87 days and confirms that the low tidal volume treatment
leads to on average 24 days in reductions on DTRH among the always-survivors, indicating
an overall benefit.

Results (cont’d)
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Fig. 1: Posterior means of ∆CSACE(X) (darker blue) with corresponding 95% credible intervals (lighter blue) likely

always-survivors.

Figure 1 shows the posterior mean and 95% credible intervals of ∆CSACE(X)
likely always-survivors. The CSACEs range from -46.94 to -8.27 days, suggest-
ing heterogeneity in response to the low tidal volume treatment. We further
explore the potential relationship between CSACEs and covariates using a clas-
sification and regression tree (CART) model with CSACEs as the response vari-
able. Results showed that AaDO2 and sex have the largest effects on CSACE.
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Fig. 2: Final CART model fit to the posterior mean DTRHs (in days) between the low tidal volume treatment and

the traditional tidal volume treatment. Values in each node correspond to the posterior mean and 95% credible

intervals for the average CSACE for the subgroup of individuals represented in that node.

Figure 2 illustrates the results of the final tree estimates based on the top 2
covariates that are the main drivers of the heterogeneity in CSACE, where the
final R2 between the tree fit, and the posterior mean CSACE of low tidal volume
treatment versus traditional tidal volume treatment was 78.9%. Male participants
or participants with higher AaDO2 tend to experience greater treatment benefit
from the low tidal volume treatment.
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