Machine Learning for Classification of COVID-19 Vaccine Misinformation on Twitter

Introduction and Background
Problem: COVID-19 Misinformation on Social Media

330 million

Globally active Twitter users

(Tankovska, 2021)

500 million

Tweets shared per day

(Statista, 2021)
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Harmful to physical/mental health, increases stigmatization and vaccine hesitancy (Bird, Klein, & Loper, 2009)

(Dredze et al., 2013)
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Decrease user engagement and alter attitude toward the Tweet

Prevents the spread of the information (wanis weser. & Mackenzie, 2001
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Garlic is a healthy food with certain antimicrobial properties, but there is no
evidence from the current outbreak that eating garlic has protected people TeXt blOb
from the new coronavirus.
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Bots Amplity the Spread of COVID-19 Vaccine Misinformation on Twitter

Language choice/high activity may deceive USErS aimeicinwachowiak etat. 2021

Conclusions
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Topic Modeling —mo—ouo Tweets (56% of total) TVY§etS were
P - were misinformation misinformation
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Guiding Research Questions Tweets

Can we create a more efficient Twitter COVID-19 vaccine misinformation Contents of the vaccine Return to pre-pandemic life Misinformation

detection system? : :
Probabilities for words that Public policy News

Does misinformation circulate differently between humans and bots? frequently occur together

Origin of the vaccine Politics and Media
What topics are humans and bots tweeting about? Anti-vaccination opinions

Word groupings manually
assigned to word/phrase

Objectives

0 Develop a Twitter data collection and preprocessing pipeline, and annotate/describe the data
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